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ABSTRACT

In a recent paper, a statistical method referred to as cluster analysis was employed to identify clusters in
forecast and observed fields. Further criteria were also proposed for matching the identified clusters in one
field with those in the other. As such, the proposed methodology was designed to perform an automated
form of what has been called object-oriented verification. Herein, a variation of that methodology is
proposed that effectively avoids (or simplifies) the criteria for matching the objects. The basic idea is to
perform cluster analysis on the combined set of observations and forecasts, rather than on the individual
fields separately. This method will be referred to as combinative cluster analysis (CCA). CCA naturally
lends itself to the computation of false alarms, hits, and misses, and therefore, to the critical success index
(CSI). A desirable feature of the previous method—the ability to assess performance on different spatial
scales—is maintained. The method is demonstrated on reflectivity data and corresponding forecasts for
three dates using three mesoscale numerical weather prediction model formulations—the NCEP/NWS
Nonhydrostatic Mesoscale Model (NMM) at 4-km resolution (nmm4), the University of Oklahoma’s Center
for Analysis and Prediction of Storms (CAPS) Weather Research and Forecasting Model (WRF) at 2-km
resolution (arw2), and the NCAR WRF at 4-km resolution (arw4). In the small demonstration sample
herein, model forecast quality is efficiently differentiated when performance is assessed in terms of the CSI.
In this sample, arw2 appears to outperform the other two model formulations across all scales when the
cluster analysis is performed in the space of spatial coordinates and reflectivity. However, when the analysis
is performed only on spatial data (i.e., when only the spatial placement of the reflectivity is assessed), the
difference is not significant. This result has been verified both visually and using a standard gridpoint
verification, and seems to provide a reasonable assessment of model performance. This demonstration of
CCA indicates promise in quickly evaluating mesoscale model performance while avoiding the subjectivity
and labor intensiveness of human evaluation or the pitfalls of non-object-oriented automated verification.

1. Introduction

It has become evident that the performance of nu-
merical weather prediction (NWP) models must be as-
sessed within a framework that acknowledges the exis-
tence of “objects” in the spatial field of observations
and forecasts. Standard verification techniques ignore
the spatial structure of forecast and observation fields
and treat errors inappropriately. For example, a mis-
placed forecast’s contribution to the mean squared er-

ror is independent of the magnitude of the displace-
ment. Or, if there is partial overlap between an ob-
served and a forecast object, then the forecast is
penalized twice (both as a false alarm and a miss).
These issues are discussed by Brown et al. (2004).

The aforementioned objects either can be discontinu-
ous parameters, such as precipitation or cloud area, or
they can be more conceptual entities that are defined
by a large aggregate of features, and, therefore, are
more difficult to assess (e.g., tropical or extratropical
cyclones). Considerable progress has been made in this
direction (Baldwin et al. 2001, 2002; Brown et al. 2002,
2004; Bullock et al. 2004; Chapman et al. 2004; Davis et
al. 2006a,b; Du and Mullen 2000; Ebert and McBride
2000; Venugopal et al. 2005). The main thrust of these
works is to identify and delineate objects in the two
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fields in a meteorologically meaningful fashion in order
to quantify model forecast skill. This injection of me-
teorology or mental models into the analysis is one of
the strengths of these approaches. Other approaches
have also been pursued (Casati et al. 2004; Nachamkin
2004).

In a recent article (Marzban and Sandgathe 2006,
hereafter MS06), an alternative methodology was pro-
posed that does not require such quantification of the
objects. Specifically, a statistical procedure was em-
ployed to perform cluster analysis (CA) (Everitt 1980)
on the observed and forecast field, separately, thereby
automatically identifying objects in the two fields. In
contrast to the aforementioned papers, here the iden-
tified objects are not parameterized at all.1 Although
this allows for the possibility that a given cluster may
not be physically meaningful, it does have the advan-
tage of allowing for automatic, objective verification.2

An important contribution of the CA-based ap-
proach is that one can assess the performance of an
NWP model as a function of spatial scale. The specific
CA algorithm that is employed is iterative (hierarchi-
cal), wherein the number of clusters is varied from N,
the total number of grid points in the data, down to 1.
As such, the number of clusters constitutes a measure
of scale; a large number of clusters corresponds to veri-
fication on a small scale, and a small number of clusters
is associated with large-scale verification. The two
quantities No and Nf (the number of clusters in the
observed field and that in the forecast field, respec-
tively) span a 2D space, over which one can compute
some scalar measure of performance. The resulting “er-
ror surface” captures the quality of the forecasts on
different scales.

The error surfaces computed in MS06 plot a measure
of distance between the observed and forecast fields.
Several such measures of distance were computed, but
they are all based on some metric of distance between
matched clusters. As such, false-alarm and missed clus-
ters did not contribute to the error surface; their num-
bers were reported separately. However, because their
numbers can be computed, one can compute a scalar
measure of performance, such as the critical success
index (CSI), in which case the error surface would be a
plot of CSI as a function of No and Nf . One such error
surface is shown in the next section.

If one decides to assess performance in terms of false
alarms, misses, CSI, or some other categorical measure
(as opposed to a distance measure), then CA may be
employed more efficiently.3 Instead of performing CA
on the two fields separately, and then matching the
clusters between the two fields (which is effectively a
third application of CA), one can perform one CA on
the combined set of observations and forecasts. Each
cluster will have some number of points belonging to
the observation field no and some number of points
originating from the forecast field nf . Then, a compari-
son of these numbers can indicate whether the cluster
should be counted as a hit, a false alarm, or a miss. As
such, CSI can be computed upon a single application of
CA. This method will be called combinative cluster
analysis (CCA), and is further described in section 3.

The number of clusters in the combined dataset may
still be interpreted as a measure of scale, in the same
sense that the number of clusters in the separate fields
is related to scale (as in MS06). A small (large) number
of clusters in the combined set corresponds to the situ-
ation wherein the verification is done at low (high)
resolution. Although there is no simple relationship be-
tween the number of clusters and the more traditional
notion of spatial resolution, in the discussion section it
is argued that the former is a more natural notion of
scale within an object-oriented framework.

The aim of the current work is to introduce CCA.
Although some general results are reported (see appen-
dix B), this work is mostly an application of the meth-
odology to forecasts of reflectivity from the University
of Oklahoma’s Center for Analysis and Prediction of
Storms (CAPS) Weather Research and Forecasting
Model (WRF) at 2-km resolution (arw2), the National
Center for Atmospheric Research (NCAR) WRF at
4-km resolution (arw4), and the National Centers for
Environmental Prediction (NCEP)/National Weather
Service (NWS) Nonhydrostatic Mesoscale Model
(NMM) at 4-km resolution (nmm4). The next section
will review the basic idea of CA-based verification. It is
followed by a section that presents the details of the
more direct CCA-based approach. The paper ends with
the conclusions and a deeper discussion of the results.

1 As described in the data section, the analysis here is per-
formed only on grid points with reflectivity values exceeding some
prespecified threshold; that threshold does not parameterize iden-
tified objects, however.

2 A type of CA has been utilized by Lakshmanan et al. (2003)
and Peak and Tag (1994) for both storm and cloud identification.

3 In an object-oriented verification of two fields, one can un-
ambiguously compute the number of false alarms, misses, and
hits. The remaining element of the contingency table (i.e., the
number of correctly forecast nonevents) is not readily comput-
able. As such, only scalar performance measures that are inde-
pendent (at least, explicitly) of this element are desirable. One
such measure is the CSI, defined as the number of hits divided by
the total number of hits, false alarms, and misses.
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2. Prior work

MS06 employed agglomerative hierarchical CA for
the purpose of identifying clusters in a forecast and an
observation field. Several measures of intercluster dis-
tance were examined, for example, the group average,
shortest distance, and longest distance. Additionally,
the distance between two points (in one or two clusters)
was computed with L2 and L1 norm.4 It was found that
CA based on the group-averaged L2 (i.e., Euclidean)
distances yields clusters that are physically reasonable.

A particularly desirable feature of the hierarchical
approach is that the number of clusters is not a fixed
quantity. The specific type of CA adopted in both
MS06 and here begins with a number of clusters equal
to the number of data points (exceeding some value),
and iteratively merges them into larger clusters. At the
end of the procedure there is only one cluster, contain-
ing all of the data. This is desirable for verification,
because the number of clusters is effectively a measure
of spatial scale. The first iteration of CA corresponds to
the very fine scale, where every grid point is considered
as an independent object, while the last iteration of CA
corresponds to a very course scale, where the entire
field is considered to be a single homogeneous object.
In short, CA-based verification conveys information
about the quality of the forecasts at any given scale, and
therefore, across all scales. This issue is further elabo-
rated in the discussion section.

In MS06, at every iteration of CA, with No clusters in
the observed field and Nf clusters in the forecast field,
all No � Nf distances between interfield clusters were
computed, and the clusters with the smallest distance
were considered as a candidate match. This distance
was recorded. Upon excluding these (nearest) clusters,
the next smallest distance was recorded and the corre-
sponding clusters were considered as another candidate
match. This process was repeated for all clusters. The
distribution of all of the recorded distances was then
considered and only those within one standard devia-
tion, for example, of the median, were accepted as
matches (hits); clusters with distances outside that
range were defined as either a false alarm or miss, de-
pending on the field to which they belong.

In short, CA-based verification was performed by
first performing CA in the two fields, separately, and
then utilizing certain matching criteria for identifying
clusters between the two fields. Given the matching, it
was possible to compute the interfield distance as a

simple average of the distances between the matched
clusters. This distance was plotted as a function of No

and Nf , resulting in the aforementioned error surface.
Moreover, CA was performed not only in the two-

dimensional space of (x, y) values, labeling grid coor-
dinates, but also in the 3D space of (x, y, p) values, with
p representing the amount of precipitation accumulated
at coordinates (x, y) over a specified period of time. A
CA-based verification in (x, y) captures performance
only in terms of the spatial placement of the clusters,
and their size, whereas CA-based verification in (x, y,
p) includes precipitation amount as well. MS06 may be
consulted for further detail.

Because that methodology is capable of identifying
hits (i.e., matches), false alarms, and misses, it is pos-
sible to also compute a categorical measure, such as
CSI, as a function of No and Nf . (This surface may be
more aptly called a performance surface, because CSI is
a positive measure of performance; that is, higher CSI
implies better performance.) An example of such a sur-
face for precipitation forecasts from an NCAR WRF
forecast is shown in Fig. 1. It can be seen that CSI is
generally higher when an equal number of clusters ex-
ists in both fields. This is not surprising; however, what
is surprising is that the height of the surface along the
diagonal undulates. The highest CSI values appear on
the scale of 5–10 clusters, followed by another peak
(albeit lower) at 40–50 clusters; even on the scale of
80–100 clusters there is another low and broad peak.
One explanation of this pattern is that the observation
and forecast fields have inherent scales, and they better
match one another on those scales. Away from the in-
herent scales, the agreement between the two fields is
smaller. Another application of such performance sur-
faces can be in model comparison. In other words, one
can compare two (or more) NWP models by comparing
their performance surfaces. The graphical challenges
are formidable and so will not be considered here. The
main point is as follows: performance depends on scale,
and so should be assessed accordingly.

As mentioned in the previous section, if a categorical
performance measure is deemed as being sufficient,
then one can compute it more efficiently using CCA; as
a side effect, it also avoids the aforementioned graphi-
cal challenges. The details are provided next.

3. Combinative cluster analysis methodology

The basic idea examined here is to perform CA on
the combined set of forecasts and observations. But
first, to properly understand this methodology, one
must distinguish (conceptually) between a cluster in the
combined data, as identified by CA, and “clusters” in

4 The L2 and L1 distances between points x and y refer to (x �
y)2 and |x � y | , respectively.
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the separate observation and forecast fields. Here, we
will refer to the former as simply cluster and to the
latter as underlying cluster. It is important to point out
that a cluster is an entity determined by CA, while
underlying clusters are what a human analyst, for ex-
ample, might perceive as objects in the two fields.

With this terminology, at any given iteration of CA,
a cluster will consist of a subset of underlying clusters.
If forecasts are perfect in every respect, then a cluster
will be exactly equal to the union of two underlying
clusters—one from each field. Also, a cluster is de-
signed to consist of similar points. It follows, then, that
for perfect forecasts, a cluster will consist of identical
underlying clusters, with one from each field. For im-
perfect forecasts, a cluster will consist of similar under-
lying clusters, with one from each field as well. If CA is
performed in (x, y) space, then the underlying clusters
are similar in terms of their spatial placement. Simi-
larly, CA in (x, y, Z) will yield clusters whose underly-
ing clusters are similar in terms of their spatial place-
ment and reflectivity (Z). Note, however, that the
aforementioned similarity is not quantifiable, because
the underlying clusters are not quantifiable. The latter
would require performing CA in the separate observa-
tion and forecast fields, that is, the methodology of
MS06, which is not the approach followed here.

The question then arises as to how much of a cluster

is from an underlying observed cluster, or, equivalently,
how much of it is from a forecast underlying cluster?
This question is important in deciding whether a cluster
should be treated as a miss, hit, or false alarm. One
criterion for assessing this quantity involves the size of
the underlying clusters. (Recall that the placement and
intensity of the clusters have already been quantified
within CA itself.) If, for example, less than 10% of a
cluster is composed of grid points in the observation
field, then that cluster may be declared to be a false
alarm. Similarly, if more than 90% of a cluster is com-
posed of grid points in the observation field, then the
cluster may be marked as a miss. Finally, if a cluster is
composed of comparable contributions from the two
fields, then it may be considered a hit.

The size of a cluster is determined by the number of
grid points defining it. Each cluster is then composed of
some number of points (no) from the observed field and
some number of points (nf) from the forecast field.
Then, the proportion no /(no � nf) can be employed to
define hits, false alarms, and misses. For example, if
that proportion for some cluster is near zero, then that
cluster may be defined as a false alarm. At the other
extreme, a cluster with a near-1 proportion could be
considered a miss, while clusters with intermediate pro-
portions would qualify as hits. Therefore, an unambigu-
ous definition of the three quantities (false alarm, hit,

FIG. 1. An example of a CSI performance surface is shown for arw2 24-h forecasts,
according to the methodology of MS06, with the CA performed in (x, y, Z).
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and miss) follows from the specification of two thresh-
olds. To simplify even further, in this work a single
threshold is considered. A cluster with no /(no � nf) less
than the threshold is considered a false alarm, and one
with a proportion 1 � no /(no � nf ) exceeding the
threshold is considered a miss; a cluster with any other
ratio is defined to be a hit. This operational definition
of false alarm, hit, and miss is shown in Fig. 2. In sum-
mary, if the threshold is low (e.g., 0.01), then the pro-
cedure is more generous in allowing a cluster to be
classified as a hit. As the threshold approaches 0.5,
fewer clusters will be classified as hits.5

In principle, one may consider all threshold values,
but given that the emphasis of this work is an explora-
tion of the new combinative cluster analysis method,
only two values are considered: 0.01 and 0.1. The
former threshold means that if less than 1% of a cluster
is composed of observed points, then it will be classified
as a false alarm. Also, if less than 1% of a cluster con-
sists of forecast points, then it is classified as a miss. A
threshold of 0.1 is similar, except the relevant percent-
age is 10%.

One may question the sensibility of this threshold
criterion for the identification of false alarms, hits, and
misses. After all, even if a cluster consists of equal
amounts of two underlying clusters (one from each
field), it makes little sense to consider that cluster a hit
if the underlying clusters are unreasonably distant from
each other, that is, if an expert might consider the two
underlying clusters as two separate objects, unrelated in
any physical way.

This is a valid objection; however, one must then
recall the iterative nature of the CA-based methodol-
ogy. Specifically, although it is true that at some itera-
tion of CA two distant underlying clusters may be iden-
tified as a single cluster, it is also true that at some
earlier iteration they would have been considered as
two separate clusters. As such, in deciding whether a
cluster should be classified as a false alarm, hit, or a
miss, the iterative nature of the CA-based approach
obviates any need to address the “closeness” between

the two underlying clusters, because different scales are
scanned as CA proceeds from one iteration to another.

CA does have a number of “parameters” that must
be specified (see MS06). But here, given the explor-
atory nature of the work, the role of these parameters
(e.g., choice of distance measure and norm) is not ex-
amined; only group-averaged distances with an L2
norm are considered.

The analysis is performed in both (x, y) and (x, y, Z)
space, where Z refers to reflectivity. In both cases, all of
the coordinates are standardized (i.e., for every coordi-
nate, the mean is subtracted out and the result is di-
vided by the standard deviation). In other words, each
coordinate has a mean of 0 and a standard deviation of 1.

Finally, there are two components in CA that are
computationally intensive: 1) the computation of a
group-averaged distance between two clusters of size
N1 and N2 , respectively, requiring �N1 � N2 distance
computations; and 2) the identification of the two near-
est clusters, which requires the computation of the N2

group-averaged distance, where N stands for the num-
ber of clusters. To expedite these components of the
analysis, group-averaged distances are computed only
for 50% (randomly sampled) of the points in each clus-
ter. Also, not all of the intercluster distances are com-
puted; on the first iteration of CA, only 50% of the
clusters are randomly selected, and their distances are
computed. That percentage is increased according to an
exponential rate, guaranteeing that 100% of the clus-
ters are considered at the last iteration.6

4. Data

An extensive dataset dealing with reflectivity fore-
casts and observations is currently being compiled by
M. Baldwin of Purdue University (2007, personal com-5 It may appear that decreasing the threshold can improve per-

formance on all accounts, because the number of hits increases
and the number of false alarms and misses decreases. Of course,
this occurs only because one component of performance is ne-
glected here, namely, the correct forecast of nonevents. Unfortu-
nately, that component of performance is not uniquely defined for
the verification of fields, and so one cannot employ measures that
explicitly account for all four components of performance, for
example, Heidke’s skill score. As such, CSI can be utilized only
for the purpose of comparing models, and even then it is impor-
tant to keep in mind all of the defects associated with CSI
(Marzban 1998).

6 Computing the group-averaged distance using only 50% of the
points in each cluster is similar to estimating a population param-
eter by a sample statistic. As such, it is a relatively standard pro-
cedure. However, it is more cavalier to match clusters by starting
with only 50% of the intercluster distances. However, experimen-
tation (not shown) suggests that although the specific clustering of
the data is affected for the first few iterations of CA, the final
configuration of the clusters is relatively robust. Again, here, the
main purpose of this step is to expedite the analysis.

FIG. 2. The definition of false alarm, hit, and miss, as a function
of a threshold placed on no /(no � nf ) is shown, that is, the fraction
of the grid points in a cluster that belong from the observation field.
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munication). Here, however, only three specific days—
12 and 13 May, and 4 June 2005—from that dataset are
employed. The grid spacing is 4.7625 km. Figure 3 dis-
plays the observations and the 24-h forecasts according
to arw2, arw4, and nmm4 (but only for reflectivity ex-
ceeding some value; see the next paragraph). The co-
ordinates of the four corners of the region are 30°N,
70°W; 27°N, 93°W; 48°N, 67°W; and 44°N, 101°W, cov-
ering the United States, east of the Mississippi.7 As an

aside, it is telling to note that, even at a very high reso-
lution and short forecast interval, the model predictions
are closer to each other than they are to the observa-
tions.

The analysis is performed on only data whose reflec-
tivity exceeds 40 dBZ for the 12 and 13 May data, and
35 dBZ for the 4 June data. There are two reasons for
“thresholding” the reflectivity: first, it reduces the
amount of data, and therefore expedites the CA phase
of the analysis; and second, it isolates the more signifi-
cant events, rendering the data more “lumpy” (i.e.,
more clusters in the two fields), and therefore provides
for a better environment for testing the CCA approach.

7 We are grateful to Mike Baldwin for providing the data for
this analysis.

FIG. 3. (top row) Reflectivity observations and (other rows, top to bottom) the corresponding 24-h forecasts according to arw2, arw4,
and nmm4. The columns refer to the three dates examined: 12 and 13 May and 4 Jun 2005. The coordinates of the region are 30°N,
70°W; 27°N, 93°W; 48°N, 67°W; 44°N, 101°W, which covers the United States east of the Mississippi. Only grid points whose reflectivity
exceeds some value are displayed (see text).
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The specific thresholds of 35 and 40 dBZ are selected to
ensure that all three dates yield approximately the same
sample size for the analysis.

5. Results

CCA begins by assigning every point in the data (ex-
ceeding the reflectivity threshold) to a single cluster of
size 1. It then identifies the two nearest clusters and
merges them into a new cluster. The procedure is iter-
ated until all of the data are merged into a single clus-
ter. It is possible to examine the clusters at each itera-
tion. For CA-based verification, it is more useful to
view the clusters in such a way as to convey some in-
formation regarding the quality of the forecasts. To that
end, in this work, the clusters are displayed as follows:
if a cluster passes the test of being a hit (see Fig. 2), then
its no observation points are plotted in one panel, and
the nf forecast points are plotted in an adjacent panel.
Similarly, if a cluster is declared to be a false alarm,
then its no observation points and nf forecast points are
plotted in adjacent panels. Missed clusters are split be-
tween two adjacent panels in the same fashion. Each of
the three pairs of panels is displayed on a single figure.
In the terminology of section 3, every cluster is decom-
posed into its underlying clusters and displayed sepa-
rately.

Examples of this layout are shown in Fig. 4, for 13
May (top) and 4 June (bottom), respectively, with 13
clusters in the joint set of observations and arw2 fore-
casts. The CA is performed in (x, y, Z) space, and the
threshold is 0.1. This higher threshold is employed for
the presentation, because it allows for more false
alarms and misses to appear in the figures; the lower
threshold of 0.01 produces too few false alarms and
misses, and results in noninformative figures (not
shown). The top two panels display the hits, with the
observation points plotted in the left panel and the
forecast points plotted in the right panel. Clearly, it is
desirable that forecasts should populate these two pan-
els much more so than the remaining panels, which, in
these examples, they do. Moreover, the matched colors
between the two panels indicate a reasonable matching
of the clusters between the two fields. Note that the
southern extension of the line of reflectivity located in
the left (western) third of the display is forecast too far
to the east, and the northern extension of the reflectiv-
ity in the right (eastern) third of the display is forecast
to extend too far to the north, yet CCA identifies these
areas as “hits.” In other words, these features are fore-
cast with only an error in location (or timing). This is a
good example of the strength of object-oriented meth-
ods such as CCA.

The false alarms are shown in the two panels in the

second row of Fig. 4, and the misses are displayed in the
two panels in the third row. The arw2 forecast for this
particular date misses a significant portion of the east-
ern extension of the reflectivity band. This is easily de-
termined by CCA, along with a few other misses. The
low number of false alarms and misses is the result of
the forgiving threshold choice of 0.1. Analogous results
(not shown) for smaller thresholds, for example, 0.01,
display even fewer clusters in the middle-left and bot-
tom-right panels. In short, the rarity of clusters in these
two panels is a direct consequence of the smallness of
the threshold.

The analogous results for 4 June are shown in the
bottom half of Fig. 4. The arw2 overforecasts for this
day, including a significant reflectivity band in the up-
per-middle portion that does not occur in the observa-
tions. CCA identifies this feature as a false alarm and
identifies a number of additional false alarms. CCA
also correctly identifies a significant number of isolated
reflectivity areas as misses.

The discussion of the previous few paragraphs is in-
tended to reveal the inner workings of CCA in a veri-
fication setting. Independent of that discussion, one can
compute CSI at each iteration, and in an objective and
automatic fashion. Figure 5 displays the results for
arw2, arw4, and nmm4 with the analysis performed in
(x, y, Z) space, with a threshold of 0.01.

The manner in which the error bars for CSI are com-
puted is described in appendix A. They are intended to
convey a rough estimate of the sampling variation. It
should be noted that the error bars are only standard
errors, and not true confidence intervals. The latter
would require some distributional assumptions. Confi-
dence intervals would be larger than the error bars
shown in this work. As such, an overlap between two
error bars would suggest “statistical equivalence,” but
an absence of an overlap may not imply that the curves
are statistically distinct. Given the crude manner in
which they are computed, these error bars should be
interpreted with care; their appearance in these graphs
is intended to be only a reminder that the CSI values
are not free of sampling error. For the purpose of visual
clarity, however, the error bars are not shown in all
figures.

Referring to Fig. 5, the following observations can be
made:8

8 To provide a reference for comparing these CSI values, a
simple gridpoint verification is performed. For all dates and mod-
els the CSI values are in the range of 0.01–0.06. Such low CSI
values are entirely expected, according to the “double penalty”
that occurs in non-object-oriented verification (Brown et al.
2002).
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1) On all three dates, arw2 outperforms arw4 and
nmm4 to some extent. This should be expected, con-
sidering its ability to better resolve smaller-scale fea-
tures and convective precipitation. (The difference
between arw2 and arw4 is least on 13 May).

2) This outperformance is generally true across most
scales examined, except on the extremes (see the
following items).

3) On larger scales (small cluster numbers), there are
very large variations in CSI. This reflects the merg-

FIG. 4. The (left) observed and (right) arw2 forecast fields on (top half) 13 May and (bottom half) 4 Jun. The top, middle, and bottom
rows in each half represent hits, false alarms, and misses, respectively; see text for details. The colors represent different clusters
according to CA, and similarly colored clusters in adjacent panels indicate matched pairs. These images are extracted from CA at the
iteration corresponding to 13 clusters. The threshold is set at 0.1 in order to allow for more false alarms and misses to appear in these panels.
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ing of generally unrelated areas of reflectivity to-
gether into single clusters, causing erratic verifica-
tion results. Visually scanning the forecasts for the
three dates (Fig. 3) reveals that no fewer than 10–15
clusters should be considered for such a large region.

4) On smaller scales (larger number of clusters), the
differences between the models appear to diminish.

5) The performance of all three models falls off with
increasing cluster number.

Appendix B provides some theoretical explanation
of these and other behaviors. It is not surprising that all

three models have lower performance when forecasting
at smaller scales than on larger scales.

To examine the effect of the threshold, the analysis is
repeated with the threshold raised to 0.1. Figure 6
(middle column) displays the results, while the left col-
umn is Fig. 5, reproduced here for comparison. Recall
that a larger threshold is expected to be accompanied
with fewer hits, but more false alarms and misses. This
expectation is borne out in these results. The behavior
of the CSI curves is generally the same for the different
threshold values. One noteworthy difference is that the
differences between the three models are diminished at
the higher threshold, albeit to different degrees for the
three dates. Another way of stating the effect of the
threshold is that when the verification procedure is al-
lowed to be more generous in allowing false alarms and
misses, then the three models have more similar per-
formances in terms of CSI, across all scales.

To assess the effect of the reflectivity (Z) on the
analysis, Fig. 6 (right column) shows the analog of the
left column, but with the analysis performed in (x, y)
space. Recall that an (x, y) analysis assesses perfor-
mance only in terms of the spatial characteristics of the
clusters, while an (x, y, Z) analysis includes reflectivity
as well. A comparison of the left and the right columns
in this figure suggests that the CSI curves for the (x, y)
analysis start higher but fall off much faster with in-
creasing cluster number than those for the (x, y, Z)
analysis. In other words, with reflectivity included in
the analysis, performance is generally higher and more
stable across different scales. Moreover, the differences
between the three models are less pronounced when
only spatial characteristics of the forecasts are taken
into account; that is, the models are more similar in
terms of the spatial characteristics of their forecasts,
and the inclusion of reflectivity in the analysis sets
the models apart. It is likely that arw2, with higher
resolution, is better able to predict the extremes in re-
flectivity, which give it an advantage in the (x, y, Z)
analysis.

6. Summary, conclusions, and discussion

Reflectivity forecasts from arw2, arw4, and nmm4 are
verified against observations in a framework that ac-
knowledges the existence of clusters (i.e., objects) in
the two fields. The methodology is based on a class of
statistical methods called the agglomerative hierarchi-
cal cluster analysis (CA). It is found that when the qual-
ity of the forecasts is assessed in terms of the critical
success index, the three models appear to have similar
performance, at least when only the spatial placement
of the clusters is concerned. However, when reflectivity

FIG. 5. The CSI values for the three models on (top) 12 and
(middle) 13 May, and (bottom) 4 Jun. The analysis is done in (x,
y, Z) with a threshold at 0.01. The error bars are no more than a
rough estimate of sampling variation.
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is also included in the analysis, then arw2 appears to
have a slight edge over the other contenders, likely
reflecting a better capability to predict reflectivity ex-
tremes or gradients. The slightly higher-quality fore-
casts of arw2 appear to persist across the full range of
scales examined herein.

In short, the main conclusions of this study are that
the proposed methodology for automatic object-

oriented verification appears to be sound, producing
reasonably meaningful results. Furthermore, based on
this methodology, arw2 forecasts emerge as marginally
superior to those of arw4 and nmm4 across a wide
range of spatial scales for three dates. A sample size of
3 is clearly inadequate to establish model performance;
however, visual inspection and gridpoint verification
bear out the success of the methodology.

FIG. 6. Similar to Fig. 5, for all three dates: (top) 12 May and (middle) 13 May, and (bottom) 4 Jun. The left column is a reproduction
of Fig. 5, but with the error bars suppressed for visual purposes. The middle column is the same but with the threshold at 0.1. The right
column is with the threshold at 0.01 (same as the left column), but with the analysis performed in (x, y) space.
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The issue of scale requires further discussion. In a
CA-based approach to verification, the number of clus-
ters is treated as a measure of spatial scale. A natural
question is how is this notion of scale related to the
more traditional notion of scale, namely ordinary/
spatial distance? There cannot be a general answer to
this question, because the answer depends on the me-
teorological phenomenon under examination. For ex-
ample, if one is assessing the quality of forecasts of an
organized system (e.g., a frontal system) occupying a
major portion of the forecast field, then examining the
problem on a fine scale will not affect the number of
clusters. On the other hand, if the weather phenom-
enon is highly “lumpy,” such as an outbreak of airmass
thunderstorms, then the number of clusters will depend
on the spatial scale being analyzed; this is true for both
a CA-based approach as well as for a human forecaster.
In short, there is no simple relationship between the
two notions of spatial scale: number of clusters and
resolution. Indeed, one may argue that in an object-
oriented approach to verification the former provides a
more natural notion of scale, because it is based on the
number of objects themselves.

A comment about the general behavior of the CSI
curves seen here is in order. A common feature of these
curves is that they appear to have “phases” during
which they increase, only to be followed by a decreas-
ing phase. The right panels in Fig. 6 display this clearly.
Appendix B presents some theoretical arguments to
explain this behavior. Briefly, the transition between
the two phases occurs when the decrease in CSI, result-
ing from a split in a cluster, is compensated by an in-
crease in the number of hits.

There are several directions in which this analysis can
be generalized. As mentioned in section 3, in the cur-
rent work the notion of a false alarm, miss, and hit
depends on a single threshold (see Fig. 2). It may be
worth exploring two different thresholds delineating
false alarms, hits, and misses. It may also be worthwhile
exploring a wider range of the two thresholds, beyond
the values 0.01 and 0.1 considered here. In this way,
one will again have a performance surface over a 2D
space spanned by different values of the threshold. It
will also be interesting to compare the resulting perfor-
mance surface with that obtained by the method de-
scribed in MS06. Moreover, the analysis should be ex-
tended to other dates and other types of weather phe-
nomena.
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APPENDIX A

Error Bar for CSI

There are numerous methods for computing error
bars for a test statistic such as CSI. Perhaps the most
accurate ones are confidence intervals derived from a
resampling approach (e.g., bootstrap), wherein the dis-
tribution of CSI is approximated by the histogram of
some number of CSI values, each obtained from a
sample taken from the data. This approach, however, is
computationally intensive, and not entirely necessary
for the task at hand. The main purpose for introducing
error bars in the current analysis is simply to emphasize
that CSI is a random variable. As such, it is sufficient to
adopt a simple (and crude) probability model for the
errors in the various elements of the contingency table,
and then simply “propagate” those errors to CSI.

In statistics, this is often referred to as the delta
method.

Consider the contingency table

�a b

c d�, �A1�

where b stands for the number of false alarms, c for the
number of misses, and d for the number of hits. The
marginals N0 � a � b and N1 � c � d are the total
number of observed nonevents and events, respec-
tively. Similarly, F0 � a � c and F1 � b � d are the total
number of forecast nonevents and events, respectively.
A reasonable assumption is that b is a binomial random
variable with parameters N0 and a/N1.A1 However, as
mentioned previously, a is ambiguous (or extremely
large; at best, equal to the number of grid points asso-
ciated with no forecasts and no events) in the verifica-
tion problem at hand.

Instead, and in the spirit of CSI, it is possible to as-
sume that b is a binomial random variable with param-
eters F1 and b/F1. Similarly, one may assume that c is a
binomial random variable with parameters N1 and c/N1.
Then, the expected value and variance of b and c are
given by

A1 A binomial random variable x, with parameters N and �, is de-
fined by the following mass function: p�x; N, �� � �x

N��x(1 � ��N�x.
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E 	b
 � F1

b

F1
� b, �A2�

Var	b
 � F1

b

F1
�1 �

b

F1
� �

bd

F1
, �A3�

E 	c
 � N1

c

N1
� c, �A4�

Var	c
 � N1

c

N1
�1 �

c

N1
� �

cd

N1
. �A5�

Writing CSI as

CSI � 1 �
b � c

b � c � d
, �A6�

and assuming b � c � d to be a constant, it follows that
the standard deviation of CSI is given by

�CSI � CSI�1
d � b

b � d
�

c

c � d�. �A7�

Note that the two terms in the parentheses are the
false-alarm ratio and the miss rate. The error bars re-
ported in this work are given by this �CSI.

It is worth pointing out that this notion of an error
bar is based on a number of simplifying assumptions
whose validity is not self-evident. For example, it is
assumed that b and c are random variables, but the sum
b � c � d (i.e., the denominator of CSI) is not. Alter-
natively, one may assume that d is a random variable, as
well. The above formula for �CSI changes in that case;
however, that possibility poses an inherent ambiguity,
which is undesirable. On the one hand, one may assume
that d has a binomial distribution with parameters N1

and d/N1; on the other hand, d may be a binomial with
parameters F1 and d/F1. Interestingly, the resulting for-
mulas for �CSI in the two cases are the first and second
terms in Eq. (A7). As such, the error bars given in Eq.
(A7) are more conservative, and that is one of the rea-
sons why they were adopted here. Another reason why
the latter error bars are not employed in this paper is
that they do not display the b ↔ c symmetry displayed
by CSI itself.

APPENDIX B

CSI and the Number of Clusters

The general behavior of CSI as the number of clus-
ters varies can be anticipated to some extent. Consider
CA at an iteration corresponding to n clusters; let the
value of CSI at this iteration be CSIn. A natural ques-
tion is “How much does CSI change every time a clus-
ter splits into two other clusters?” In other words, in

going from one iteration to the next, how much does
CSI change? A partial answer follows when one notes
that an increase of 1 in the number of clusters will
increment only one of the three components of CSI.

Specifically, in the notion of appendix A, and writing
CSIn � d/(b � c � d), incrementing n by 1 will result in
one of the following:

CSIn�1 �
d

b � c � d � 1

� � n

n � 1�CSIn if b or c are incremented,

�B1�

CSIn�1 �
d � 1

b � c � d � 1

� � n

n � 1��1 �
1
d�CSIn if d is incremented.

�B2�

In the first situation, when b or c is incremented, one
can solve the iterative equation for CSIn, exactly:

CSIn �
1
n

CSI1.

In other words, in the first situation, CSI falls off as 1/n.
In the second situation, where a split in a cluster

increases the number of hits, the appearance of 1/d in
the equation makes the solution nontrivial. However,
one can still estimate CSI for limiting values of d. For
large values of d, the 1/d term can be ignored, and the
solution reduces to the one found in the first situation,
that is, CSIn � 1/n. For small values of d, the equation
becomes

CSIn�1 � � n

n � 1��1
d�CSIn ,

which implies that CSIn�1 may actually be larger than
CSIn. In other words, if the number of hits is small, then
CSI may increase with n, while CSI is constrained to
decrease with n monotonically if the number of hits is
large. This explains the behavior of the CSI curves in
Figs. 6 and 7; there are regions in n where CSI in-
creases, while the overall behavior is a 1/n fall off.
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