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We consider the problem of detecting changes in a multivariate data stream. A change

detector is defined by a detection algorithm and an alarm threshold. A detection

algorithm maps the stream of input vectors into a univariate detection stream.

The detector signals a change when the detection stream exceeds the chosen alarm

threshold. We consider two aspects of the problem: (1) setting the alarm threshold and

(2) measuring/comparing the performance of detection algorithms. We assume we are

given a segment of the stream where changes of interest are marked. We present

evidence that, without such marked training data, it might not be possible to accurately

estimate the false alarm rate for a given alarm threshold. Commonly used approaches

assume the data stream consists of independent observations, an implausible

assumption given the time series nature of the data. Lack of independence can lead to

estimates that are badly biased. Marked training data can also be used for realistic

comparison of detection algorithms. We define a version of the receiver operating

characteristic curve adapted to the change detection problem and propose a block

bootstrap for comparing such curves. We illustrate the proposed methodology using

multivariate data derived from an image stream.

& 2009 Published by Elsevier B.V.
1. Introduction

We consider the problem of detecting changes in a
multivariate data stream. We want to assess whether the
most recently observed data vectors (the ‘‘current set’’)
differ in some significant manner from previously ob-
served vectors (the ‘‘reference set’’). Change detection is
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of interest in a number of applications, including
neuroscience [3], surveillance [7], seismology [18], voice
activity detection [8] and identification of activity periods
in radar, sonar and biomedical signals using a known
template (see also [16,17] and references therein).

The notion of change is often formalized in terms of
distributions: vectors in the current set are assumed to be
sampled from some multivariate distribution Q , whereas
those in the reference set are assumed to come from a
(possibly different) distribution P. The task of a change
detector then is to test the hypothesis P ¼ Q given the two
samples. We obtain a new value of the test statistic every
time a new observation arrives. We flag a change as soon
as the test statistic exceeds a chosen alarm threshold
[10,12,14].

In a concrete application of this recipe we face a
number of choices such as picking a two-sample test that
o evaluate change detectors in a multivariate streaming
.04.011
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is sensitive toward changes of interest; choosing the sizes
of the current and reference sets; and choosing an alarm
threshold that results in the desired tradeoff between
false alarms and missed changes. More complicated
schemes are possible involving, e.g., multiple two-sample
tests used in parallel and adoption of a more complex
notion of ‘‘change’’. No matter what the details, ultimately
we will end up with a univariate stream that we call the
‘‘detection stream’’. We flag a change whenever the
detection stream exceeds a chosen alarm threshold.
Abstracting away details, a change detector can be defined
as a combination of a detection algorithm mapping the
multivariate input stream xt into a univariate detection
stream dt , and an alarm threshold t. The only fundamental
restriction is that dt can only depend on input observed up
to time t.

In this paper we focus on two problems: (i) choosing
between different detection algorithms and (ii) selecting
an alarm threshold to obtain a desired false alarm rate. We
assume the existence of labeled training data, i.e., a
segment of the stream where changes of interest have
been marked. To quantify the performance of a detection
algorithm, we propose an adaptation of the standard
receiver operating characteristic (ROC) curve (Section 3).
A resampling method similar to the block bootstrap lets us
compare the ROC curves of different detection algorithms
on the labeled data in a statistically meaningful way
(Section 5). The labeled data also allow us to determine
the alarm threshold for a desired false alarm rate without
the usual assumption that vectors in the stream are
observations of independent random variables, which is
implausible when observing a time series. If the assump-
tion is violated, estimates of the false alarm rate based on
this assumption can be wildly off the mark (Section 4).
We illustrate our main points using a multivariate data
stream derived from a series of images of Portage Bay in
Seattle (Sections 2 and 6). Section 7 concludes the paper
with a summary and some ideas for future work.
2. Data

To illustrate the ideas in this paper, we created a
multivariate data stream from a sequence of images
recorded with a web camera operated by the Sound
Recording for Education (SORFED) project at the Applied
Physics Laboratory, University of Washington. The camera
is mounted on a barge several feet above the water in
Portage Bay, Seattle, and usually takes images at 2 s
intervals. We use a sequence of 5002 images recorded on
June 27, 2007, and divide the 168� 280 pixels in each
image into a 14� 20 grid of bins, with each of the
280 bins containing 168 pixels. We summarize each bin
by its average gray level, resulting in a stream of
280-dimensional data vectors.

Motivated by potential applications of change detec-
tion to surveillance, we decided to regard the appearance
of boats in the image stream as changes of interest.
We looked at each of the 5002 images and manually
marked the bins in each image containing a boat passing
through Portage Bay. Fig. 1 shows one such image, with
Please cite this article as: A.Y. Kim, et al., Using labeled data t
environment, Signal Process. (2009), doi:10.1016/j.sigpro.2009
four bins marked as containing a boat. Fig. 2 shows the
number of marked bins for each image plotted against
image index. We define a ‘‘boat event’’ as a sequence
consisting of two or more consecutive images with at least
one marked bin. There are 19 boat events in all, and their
location and extent are indicated by the black rectangles
at the bottom of Fig. 2. There are 20 quiescent periods
surrounding the boat events. The images during the
quiescent periods are quite variable because of light
variations on the water from cloud movement, ducks
moving around in the water close to the camera, wind-
driven ripples in the water, wakes from boats no longer in
view of the camera, and other sources of noise.

We emphasize that we use the images primarily as a
means for constructing a multivariate data stream with
characteristics that one would expect in actual applica-
tions of change detection, but that are not typically
present in simulated data (e.g., correlated and hetero-
geneous noise). We do not make use of the neighborhood
structure among the 280 variables; in fact, all of the
results we present would be exactly the same if we were
to randomly reorder the variables. In short, the methods
we propose are not specific to image streams.
3. Quantifying the performance of a change detector

Defining a general measure quantifying the perfor-
mance of a change detector for streams xt is a nontrivial
problem. Generally there are two kinds of errors, missed
changes and false alarms, but appropriate definitions for
these are application dependent. Consider a simple
scenario where the stream consists of stretches during
which the xt are independent and identically distributed
(IID). Suppose a change occurs at time t, but an alarm
rings later on. It is not clear if this should be chalked up as
a correct (but delayed) alarm or a missed change followed
by a false alarm. In addition, even if the xt are
independent, the detection stream dt is typically corre-
lated, leading to false alarms that occur in bursts and
forcing us to choose between counting individual false
alarms or counting bursts. The piecewise IID assumption
is also questionable: in our motivating example, it makes
more sense to think of the stream as a concatenation of
quiescent periods (no boats), interrupted by events
(activity periods with boats present). During events, the
distribution of xt is not constant due to boat movement,
and it might not be constant during quiescent periods
either because of, e.g., lighting changes from the passage
of clouds.

Raising an alarm soon after the start of an event is
crucial for surveillance: if the alarm occurs too long after
the start, the horse will have left the barn, and the alarm is
useless. Changes within events or transitions from events
to quiescent periods are not of interest. We define an
event to be successfully detected if the detection stream
exceeds the alarm threshold t at least once within a
tolerance window of width NW after the event’s onset.
We define the hit rate hðtÞ as the proportion of success-
fully detected events. The false alarm rate f ðtÞ is simply
the proportion of times in the quiescent periods during
o evaluate change detectors in a multivariate streaming
.04.011
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Fig. 1. Picture taken by a web camera overlooking Portage Bay, Seattle. The picture has been divided into a 14� 20 grid of rectangular bins, four of which

are highlighted and contain a boat passing through the bay.

Fig. 2. Number of bins (variables) marked as containing a boat versus image index (top part of plot), along with markers for the 19 boat events (bottom).
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which the detection stream exceeds the alarm threshold.
There is no penalty for raising multiple alarms during an
event. Our definitions for hðtÞ and f ðtÞ are admittedly
simple, and others might be better in scenarios not
involving surveillance; however, our method for compar-
ing change detectors (Section 5) is not dependent on these
particular definitions.

We can summarize the performance of a change
detection algorithm by plotting the hit rate hðtÞ versus
the false alarm rate f ðtÞ as we increase the alarm
threshold t. Both hðtÞ and f ðtÞ are monotonically non-
increasing functions of t. The graph of the curve
t�!ðf ðtÞ;hðtÞÞ is a monotonically non-decreasing function
of f ðtÞ. We call this curve the ROC curve for the algorithm
since it is similar to the standard ROC curve used to
evaluate binary classifiers [6].

It is useful to compare the performance of a detection
algorithm with a ‘‘null’’ algorithm that ignores the data
and signals an alarm with probability a 2 ½0;1� indepen-
dently at each time t. Clearly the false alarm rate for this
algorithm is a. The rate at which this algorithm will
successfully flag an event is given by the probability that
an alarm is raised at least once within the tolerance
window NW , which is governed by a binomial distribution
Please cite this article as: A.Y. Kim, et al., Using labeled data t
environment, Signal Process. (2009), doi:10.1016/j.sigpro.2009
with parameters NW and a. The ROC curve of the null
algorithm is thus a�!ða;1� ð1� aÞNW Þ.
4. Setting the alarm threshold

A critical parameter of a change detector is the alarm
threshold t, which controls the tradeoff between false
alarms and missed changes. Without training data that
mark changes of interest, there is no way of realistically
assessing the hit rate hðtÞ for a given t. The commonly
proposed approach to setting t is therefore to choose a
false alarm rate a considered acceptable and then
determine the corresponding t. If we assume a piecewise
IID model, we can sometimes analytically determine the
appropriate value of t. If an explicit calculation is not
feasible, we can resort to a computational approach based
on a permutation argument [1,5,9]. Assuming there is no
change at or before the current time T , then x1; . . . ;xT

would be IID. To test the IID hypothesis, we compare the
current value dorig

T of the detection stream to values
d1

T ; . . . ;d
M
T obtained by applying the detection algorithm to

M random permutations of x1; . . . ;xT . If dorig
T is the k-th

largest among fdorig
T ; d1

T ; . . . ; d
M
T g, then we can reject the IID
o evaluate change detectors in a multivariate streaming
.04.011
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Table 1
False alarm rate a for the squared two-sample t-test using a threshold

level of t ¼ 3 and data generated from a Gaussian first-order auto-

regressive process with a unit-lag autocorrelation of f.

f �0.9 �0.5 0 0.5 0.9

a 0.008 0.018 0.098 0.282 0.537
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hypothesis at level k=ðM þ 1Þ. If the level is less than the
desired false alarm rate, we signal a change and ‘‘reset the
clock’’ by discarding x1; . . . ;xT . (Note that in this case the
detection threshold will vary with time.)

The problem with the analytical and permutation-
based approaches is that their validity depends critically
on the piecewise IID assumption, which seems inherently
implausible since we are observing a time series. If it is
violated, the results can be wildly off the mark, a fact we
can demonstrate using a simple detection algorithm based
on a two-sample test. Detection algorithms based on such
tests have been discussed previously (see, e.g., [10] and
references therein). The idea is to compare the distribu-
tion P of the most recently observed data with the
distribution Q of a reference set observed earlier.
The value dT of the detection stream is the test statistic
of the two-sample test, and the (nominal) false alarm rate
for detection threshold t is the probability that dTXt
under the null hypothesis P ¼ Q (the qualifier ‘‘nominal’’
is a reminder that the significance level is derived under
the IID assumption). For our illustration we assume the
data stream to be one dimensional and define the current
and reference sets to be the NC most recent observations
and the NR immediately preceding observations. The
square of a two-sample t-test forms the detection stream
at the current time T:

dT ¼
ðx̄C � x̄RÞ

2

1

NC
þ

1

NR

� �
ŝ2

,

where x̄C and x̄R are the sample means of the current and
reference sets, and

ŝ2
¼

1

NC þ NR � 2

XNC�1

n¼0

ðxT�n � x̄CÞ
2
þ
XNR�1

n¼0

ðxT�NC�n � x̄RÞ
2

" #

is the pooled variance estimate. Although the t-test is
designed to test the null hypothesis that the current and
reference sets have the same mean values, we can still use
it as a test of the IID hypothesis, recognizing that it might
have little or no power for detecting changes other than
mean shifts.

If we are willing to assume that the observations in the
current and reference sets are realizations of IID Gaussian
random variables, then the threshold t for false alarm rate
a is the square of the a=2 quantile of the t distribution
with NC þ NR � 2 degrees of freedom. If we drop the
Gaussianity assumption, we can use the permutation
approach described above. The problem in either case is
that the actual false alarm rate can be vastly different
from the desired (nominal) rate if the independence
assumption is violated.

As an example, choose NC ¼ 4, NR ¼ 16, and let
X1; . . . ;X20 be a segment of an autoregressive process
Xt ¼ fXt�1 þ �t , where jfjo1 is the correlation between
Xt�1 and Xt , and the �t are IID standard Gaussian. If f ¼ 0,
the Xt are IID; if fa0, they are no longer independent. The
alarm threshold for false alarm rate a ¼ 0:1 when f ¼ 0 is
t¼: 3 (the square of the 5th percentile for a t distribution
with 18 degrees of freedom). For five different f, we
simulate 10;000 independent realizations of X1; . . . ;X20
Please cite this article as: A.Y. Kim, et al., Using labeled data t
environment, Signal Process. (2009), doi:10.1016/j.sigpro.2009
and compute d20 for each realization. We then estimate a
using the fraction of times when d2043 in the 10;000
realizations. Table 1 shows that, as expected, the false
alarm rate is close to 0.1 when f ¼ 0, but is dramatically
off the mark otherwise.

To illustrate the failure of the permutation approach,
we generate an additional 1000 independent realizations
of X1; . . . ;X20 for our selected values of f. For each
realization, we generate 1000 random permutations,
compute d20 and keep track of the proportion of times
that d2043—this proportion is what a permutation test
would declare the false alarm rate to be for t ¼ 3. When
averaged over all 1000 realizations of the AR process, this
proportion is very close to 0.1 for all five values of f: the
permutation approach gives the correct false alarm rate
when f ¼ 0 (the IID case) but it underestimates (over-
estimates) the correct rate a when f40 ðfo0Þ, with the
discrepancy becoming more serious as f approaches 1
ð�1Þ. We conclude that the permutation-based approach
for setting the alarm threshold is not viable in the
presence of correlated data (the usual case when dealing
with time series).
5. Comparing change detectors

In this section we propose a method for evaluating the
relative performance of change detectors that takes into
account sampling variability.

Suppose we have two change detectors with ROC
curves t�!ðf 1ðtÞ;h1ðtÞÞ and t�!ðf 2ðtÞ;h2ðtÞÞ. There are
two obvious ways to use these curves for assessing
the relative performance of the detectors. For a given hit
rate h1ðt1Þ ¼ h2ðt2Þ � h, we can compare the false alarm
rates f 1ðt1Þ and f 2ðt2Þ and declare the first detector to be
better if f 1ðt1Þof 2ðt2Þ; alternatively, for a given false
alarm rate, we can compare hit rates. More elaborate
comparison schemes are possible [15]. In our boat
example, we define the hit rate hðtÞ in terms of the onset
of a small number of events, so it is easier to compare the
false alarm rates for a given hit rate. This approach yields
false alarm rates for the two detectors that are functions
of h. We denote these functions as f 1ðhÞ and f 2ðhÞ and
compare them using the ratio

r1;2ðhÞ ¼
maxðf 1ðhÞ; �Þ
maxðf 2ðhÞ; �Þ

, (1)

where � is a small number that allows the false alarm rate
to be zero.

We use a modified version of the block bootstrap to
assess if r1;2ðhÞ is significantly different from unity. Block
bootstrapping is an adaptation of the standard bootstrap
o evaluate change detectors in a multivariate streaming
.04.011
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designed for use with time series [4,11,19]. In the standard
bootstrap, the basic unit for resampling is an individual
observation; in a block bootstrap, it is a block of
consecutive observations, with each block having the
same size. The block size is selected such that, within a
block, the dependence structure of the original time series
is preserved, while values at the beginning and end of
each block are approximately independent. Our input
stream is naturally broken up into blocks of unequal size,
namely, boat events and quiescent periods. We use these
blocks to define the basic unit in two modified block
bootstraps. The first is an ‘‘uncoupled’’ bootstrap. Given ne

boat events and nq ¼ ne þ 1 quiescent periods, we resam-
ple (with replacement) ne boat events and nq quiescent
periods to form a bootstrap sample with the same
structure as the original stream (nq quiescent periods
separated by ne events). The second is a ‘‘coupled’’
bootstrap, in which the basic unit is taken to be an event
and the quiescent period immediately following it. The
motivation for this scheme is to preserve potential
dependence between the quiescent period following an
event and the event itself due to boat wakes.

The method for comparing detectors is the same for
the coupled and the uncoupled bootstraps. For a given
bootstrap sample, we evaluate f 1ðtÞ, h1ðtÞ, f 2ðtÞ and h2ðtÞ
over a grid of thresholds t, from which we calculate the
curve r1;2ðhÞ. We repeat this procedure nb times, yielding
nb bootstrap replicates of r1;2ðhÞ. We then construct ð1� aÞ
two-sided non-simultaneous confidence intervals for the
ratio r1;2ðhÞ based upon the empirical distribution of the
bootstrap replicates. (The ‘‘matched pair’’ design by which
we evaluate f 1ðtÞ and f 2ðtÞ for each bootstrap sample and
then compute confidence intervals for r1;2ðhÞ will lead to
sharper comparisons than an unmatched design in which
bootstrap samples are generated separately for each
detector.) As we vary h, the end points of these confidence
intervals trace out confidence bands. If the confidence
interval for r1;2ðhÞ does not include unity, we have
evidence at the ð1� aÞ confidence level that one change
detector outperforms the other in the sense that it has a
smaller false alarm rate for hit rate h.

6. An illustrative example

In this section we illustrate the methodology presented
in the previous sections by considering two change
detectors that are designed to detect the boat events
described in Section 2. We define the two-sample tests
behind the change detectors in Section 6.1, after which we
demonstrate the pitfalls of using a permutation approach
to determine the false alarm rate (Section 6.2). We then
illustrate how we can compare the performance of the
two change detectors in a manner that takes into account
sampling variability (Section 6.3).

6.1. Definition of detection streams based on two-sample

test statistics

The two detectors we use to illustrate our methodology
are quite different in their intent, but both are based on
Please cite this article as: A.Y. Kim, et al., Using labeled data t
environment, Signal Process. (2009), doi:10.1016/j.sigpro.2009
two-sample tests. The first detector is designed to be
sensitive to mean changes, while the second uses a
nonparametric test with power against all alternatives.
To simplify notation, we define the tests for samples
c1; . . . ; cn (the current set) and r1; . . . ; rm (the reference
set), with the understanding that we would obtain
the values of the corresponding detection streams at the
current time T by comparing the n ¼ NC most recent
observations with the m ¼ NR observations immediately
preceding them.

The first detection stream, denoted as dðmaxÞ
T , is based

on the largest squared element of the vector c̄� r̄, where c̄
is the average of c1; . . . ; cn, and r̄ is similarly defined. The
detection stream will be large if there has been a recent
large change in one of the 280 variable in the input
stream, i.e., a large change in mean gray level for one of
the bins in the image. Boats are small and their
appearance changes the mean gray level for a small
number of bins; therefore we want a test that is sensitive
to large changes in a few bins, rather than to small
changes in a large number of bins.

The second change detector we consider is based on a
so-called ‘‘energy’’ test statistic that has been advocated
as a nonparametric test for equality of two multivariate
distributions [2,20,22–24]. This statistic is given by

dðeÞT ¼
2

nm

Xn

i¼1

Xm

j¼1

kci � rjk �
1

n2

Xn

i¼1

Xn

j¼1

kci � cjk

�
1

m2

Xm

i¼1

Xm
j¼1

kri � rjk,

where k � k denotes the Euclidean norm. This test is
consistent against all alternatives to H0 and hence is not
focused on any particular aspect of the difference in
distribution between the current and reference sets [24].
Because it is an omnibus test, it cannot be expected to
have as much power for detecting a change in means as a
test specifically designed for that type of change. Fig. 3
shows the detection streams dðmaxÞ

T (top pane) and dðeÞT

(bottom) plotted against time for the case NC ¼ 4 and
NR ¼ 16.
6.2. Pitfalls of setting the alarm threshold via permutation

tests

To complement the simulated example of Section 4, we
now present an empirical demonstration of our assertion
that we cannot expect to get reasonable estimates of the
false alarm rate using a permutation argument.

We apply the change detector based on the energy test
statistic with NC ¼ 4 and NR ¼ 16 to the longest quiescent
period in our boat data (1030 images). For each of the 1011
segments of length 20 we calculate the permutation-
based p-value (i.e., the observed level of significance) of
the energy test statistic: we compare the original value
of the test statistic for the segment with a reference set of
500 ‘‘permuted’’ values obtained by applying the test to a
randomly shuffled version of the segment. If the original
value is the k-th largest amongst these 501 values, then
the p-value is â ¼ k=501 [1].
o evaluate change detectors in a multivariate streaming
.04.011
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Fig. 3. Two detection streams plotted versus image index T , with boat events marked as in Fig. 2. The top plot shows dðmaxÞ
T , which is based upon the

maximum squared difference in means; the bottom is for dðeÞT , which is based upon the energy test statistic. The settings NC ¼ 4 and NR ¼ 16 are used for

both detectors at each current time T .

Fig. 4. Histograms of p-values (levels of significance) as empirically determined by a permutation test based upon data from a quiescent period (left-hand

plot) and upon data from the same period but randomly shuffled (right-hand).

A.Y. Kim et al. / Signal Processing ] (]]]]) ]]]–]]]6
Since we are dealing with a quiescent period, the
distribution of â across all 1011 values in the detection
stream should be uniform over the interval [0,1]
(see Lemma 3.3.1 of [13]). The left-hand pane of Fig. 4
shows a histogram of the p-values, which clearly is not
consistent with a uniform distribution. To demonstrate
that it is indeed the correlated nature of the input stream
that is causing the problem, we reran the entire procedure
using the same 1030 images, but shuffling the order of the
images at random. This shuffling removes the correlation
between images that are close to one another. We now
obtain the histogram in the right-hand pane, which is
clearly much more consistent with a uniform distribution.
This demonstrates that we can use a permutation
Please cite this article as: A.Y. Kim, et al., Using labeled data t
environment, Signal Process. (2009), doi:10.1016/j.sigpro.2009
argument to determine the false alarm rate if indeed the
IID assumption is valid.
6.3. Comparison of change point detectors

Here we compare the two change detectors whose
detection streams are based on the two-sample test
statistics defined in Section 6.1 (again using NC ¼ 4 and
NR ¼ 16). As discussed in Section 3, we declare that a
change detector has successfully identified a boat event if
the detection stream exceeds the alarm threshold at least
once during a tolerance window of width NW . Here we set
NW equal to NC ¼ 4, but other choices could be enter-
o evaluate change detectors in a multivariate streaming
.04.011
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Fig. 5. ROC curves for detection streams dðmaxÞ
T and dðeÞT , along with a dashed curve appropriate for a null algorithm that ignores the data and raises an

alarm at each time t with probability a.

Fig. 6. Comparing ROC curves using rmax;eðhÞ versus hit rate h (solid curve). The dashed curves indicate non-simultaneous 90% empirical confidence

intervals based upon 5000 bootstrap samples.

A.Y. Kim et al. / Signal Processing ] (]]]]) ]]]–]]] 7
tained (i.e., there is no compelling reason to couple NW

and NC).
Fig. 5 shows the ROC curves for the change detectors

based on dðmaxÞ
T and dðeÞT along with a curve appropriate for

null detector based upon NW ¼ 4 coin tosses (dashed).
Except at the very highest hit and false alarm rates (upper
right-hand corner), the dðmaxÞ

T detector (sensitive to mean
changes) generally outperforms the dðeÞT detector (sensitive
to arbitrary changes) in the sense of having a smaller false
alarm rate for a given hit rate. To assess whether this
difference between the detectors is statistically signifi-
cant, we use the bootstrap procedures discussed in
Section 5 to determine a 90% (non-simultaneous) con-
fidence band for the ratio rmax;eðhÞ defined in Eq. (1) with
� ¼ 0:001. The uncoupled and coupled bootstrap proce-
dures yield basically the same results, so we only present
results from the uncoupled scheme. Fig. 6 shows the
confidence bands based upon 5000 uncoupled bootstrap
samples. Except for a limited range of hit rates around
0.2–0.3, the intervals for rmax;eðhÞ include 1, indicating that
for most hit rates the difference between the two
detectors is not significant. A possible explanation for
this inconclusive result is the small number of events in
our training data.
Please cite this article as: A.Y. Kim, et al., Using labeled data t
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7. Summary and discussion

We have proposed a method for comparing two change
detectors. The method is based on labeled data, i.e., a
segment of the input stream in which we have identified
events and quiescent periods. The key element is an
adaptation of the block bootstrap. The adaptation con-
structs bootstrap streams by piecing together events and
quiescent periods randomly chosen (with replacement)
from those making up the original stream. The bootstrap
allows us to assess the effect of sampling variability on
pairwise comparisons of ROC curves, and thereby deter-
mine whether a particular change detector is significantly
better than another. Our example compared two change
detectors whose detection streams are constructed using
two-sample tests, but our method is not dependent upon
this particular construction and can be applied to other
kinds of change detectors (e.g., the output of cumulative
sum statistics [21], which are not based explicitly on the
two-sample notion).

Our proposed method can be extended to compare the
performance of K42 change detectors that might arise in
many different ways (e.g., different sizes for the current
and references windows [10] or a time-varying geometry
o evaluate change detectors in a multivariate streaming
.04.011
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in which the reference window grows monotonically in
time while maintaining a constant size for the current
window). A problem with comparing K detectors is that
none might emerge as uniformly best for all hit rates.
Ignoring the question of statistical significance, Fig. 5
shows that the dðmaxÞ

T detector generally outperforms the
dðeÞT detector, but not at the highest hit/false alarm rates.
We could focus on a single hit rate and then order the K

detectors by their false alarm rates. The natural general-
ization of the matched pairs design for comparing the
false alarm rates of two detectors is a blocked design
where each bootstrap sample is a block, and the detectors
are the treatments. Detectors can then be compared using
standard multiple comparison procedures.

If we have labeled data, we can do more than just
evaluate the performance of predefined change detec-
tors—we can use the data to design new detectors. One
possibility is to look for linear or nonlinear combinations
of existing change detectors that outperform any single
detector. For example, suppose that a change of interest is
associated with a change in both the mean and the
variance of a distribution, and suppose that we have two
change detectors, one of which has power against changes
in means, and the other, against changes in variance. Then
some combination of these two detectors is likely to be
superior to either individual detector in picking up on the
change of interest, and the particular combination that is
best can be determined using the labeled data. Using
labeled data to construct new ‘‘targeted’’ change detectors
is an interesting area for future research.
Acknowledgments

The authors thank Kevin Williams, Russ Light and
Timothy Wen of the SORFED project for supporting the
use of their data. This work was funded by the US Office of
Naval Research under Grant number N00014–05–1–0843.

References

[1] T.W. Anderson, Sampling permutations for nonparametric methods,
in: B. Ranneby (Ed.), Statistics in Theory and Practice: Essays in
Honour of Bertil Matérn, Swedish University of Agricultural
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