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Abstract—The linear association between two continuous 

quantities is often assessed in terms of Pearson’s correlation 
coefficient, r. However, if the data are not homogeneous, i.e., 
consist of groups, then it is important to decompose r into 
components that measure the correlation within the groups, and 
the correlation between the groups. We point out the importance 
of examining these components, and present a method for 
computing them. Our approach has several attractive features. 
First, all three measures of correlation are computed in a unified 
framework based on the analysis of (co)variance in a single linear 
model. Second, it allows one to measure nonlinear correlations. 
Finally, p-values, traditionally computed in linear modeling can 
be utilized to test the statistical significance of the three measures 
of correlation. The method is applied to assess the correlation 
between invasive observations and noninvasive estimates of 
intracranial pressure (ICP), with individual patients representing 
each group. The total correlation is 0.506, while the within-group 
and between-group correlations are 0.053 and 0.518, respectively. 
As such, the ICP predictions are useful for estimating/predicting 
the mean (over time) ICP for any patient, but they are useless for 
monitoring an individual’s ICP at any time.  
 

Index Terms—Performance evaluation, correlation, analysis of 
variance, noninvasive treatment, intracranial pressure sensors 
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I. INTRODUCTION 

 
IVEN data on two continuous quantities x and y, the 
strength of the (linear) association between them is often 

assessed by a scatterplot of y vs. x. A strong linear pattern 
along the diagonal of the scatterplot indicates strong 
association. If x and y are observations and corresponding 
predictions, respectively, then the overall position of the 
points on a scatterplot, relative to the diagonal, is a measure of 
the accuracy of the predictions, and the amount of scatter 
about the diagonal gauges the precision of the predictions. A 
popular, scalar measure of the latter is Pearson’s correlation 
coefficient [1], here denoted r.  

If the data are not homogeneous, then the scatterplot  
displays clusters/groups. In such a case, then there are three 
different correlations: 1) correlation, ignoring the existence of 
clusters altogether; 2) correlation within the groups; and 3) 
correlation across the groups. Borrowing from the language of 
analysis of variance [2], in this paper we refer to these as total 
correlation, within-group correlation, and between-group 
correlation, respectively. Each of these three correlations has 
a different meaning, and the appropriate choice depends on the 
problem at hand.   

At the simplest level, the total correlation can be measured 
by computing r across the entire data, ignoring the groups 
altogether. The within-group correlation may be measured by 
computing r within each of the groups, and then averaging 
them. Similarly, a measure of the between-group correlation 
can be obtained by averaging the x and y values for each group 
(leading to a scatterplot where each group is replaced by the 
average of the corresponding x and y), and then computing r 
across them. Although these specific measures provide 
intuitive gauges of the respective correlations, they lack a 
desirable feature characteristic to analysis of variance: the sum 
of these within-group and between-group correlations is not 
readily related to the total correlation. Furthermore, 
correlations measured with r have two additional ``defects:” r 
gauges only linear associations, and statistical tests of r are 
often sensitive to violations of their respective assumptions 
[3], [4]. In this paper, we propose a decomposition that does 
embody a simple relation between the three measures of 
correlation. Additionally, the proposed method readily allows 
for nonlinear associations, and effortlessly performs statistical 
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tests on each component.   
The importance of the distinction between the three 

correlations is best illustrated through Simpson’s paradox [5]: 
Consider the simulated data shown in Fig 1. The r for each of 
the two groups (i.e., measuring correlation within-group) is 
0.9. But the total r for the entire data set is zero. In other 
words, by examining only the total correlation, one can miss 
the fact that the correlation within group is very high.  

Moreover, the three correlations have very different 
meanings and interpretations, as illustrated in the next section. 

The “causes” of groups in scatterplots can vary, but a 
common situation in which clustering occurs is when multiple 
measurements (and predictions) are made on multiple 
subjects, in which case each group corresponds to a unique 
subject. An example of data from such an experimental design 
is shown in Fig. 2. Here ZFP (Zero-Flow Pressure; further 
discussed below) is used as a noninvasive estimate/prediction 
of ICP.   

I.INTRACRANIAL PRESSURE (ICP) 
ICP is an important factor in monitoring patients who 

have experienced head trauma as well as other conditions [6], 
[7]. Direct measures of ICP are invasive, requiring the 
placement of pressure sensors within the cranium. Therefore, 
there is great interest in finding noninvasive measures of ICP 
[8]-[22]. One particular noninvasive measure of ICP is ZFP, 
and the relation between the two has been examined in [23]-
[26]. Most measures of ZFP involve linearly extrapolating 
arterial blood pressure (ABP) to the point where blood flow is 
zero (hence, the name zero-flow-pressure). In a recent article, 
we examined a nonlinear extrapolation method for defining 
ZFP [26]. Here, only the linear extrapolation results from that 
work will be considered, in order to focus on the matter at 
hand, namely the assessment and meaning of correlations. 
Details of the nonlinear extrapolation method can be found in 
[26]; suffice it to say that ICP and ZFP were computed for 200 
random samples (at different times) taken from each of 104 
patients. Said differently, there are 104 clusters/groups in Fig. 
2, each consisting of 200 points.  

As mentioned previously, given the existence of clusters in 
this scatterplot, there exist different notions of correlation. 
Each has a different meaning, and its utility depends on the 
problem at hand.  If one is interested in predicting the mean 
(over time) ICP for a patient, then the correlation between-
group is appropriate for assessing the quality of the 
predictions. On the other hand, if one is interested in 
predicting ICP, for a given patient, across time, then the 
appropriate quantity is the correlation within-group. 

The ICP literature abounds with instances where only the 
total correlation is reported. Czosnyka, et al [9] report r=0.41, 
Thees, et al [10] find r=0.91, and Buhre, et al [24] report 
r=0.93. For the data in Fig.2 the total r is 0.506 [26]. But this 
single number obscures the visually evident fact that the data 
are not homogeneous. It is, therefore, important to compute 
some measures of the within-group and between-group 
correlations.   

As mentioned above, intuitive measures of the two 

correlations can be computed as follows: One may average 
over the x and y of the 200 cases for each patient, leading to a 
scatterplot containing 104 points, corresponding to the 104 
patients (Fig. 3). The r corresponding to that scatterplot is 
0.519, and it provides a measure of between-group correlation. 
Fig. 4 shows the histogram of the r values for each of the 104 
patients. Each of these r values is an estimate of the within-
group correlation, and their average provides a more precise 
estimate. The mean ±1 standard deviation of these r values is 
0.07 ± 0.47. 

As mentioned previously, the first aim of this paper is to 
highlight the importance of examining all three correlations. 
The second aim is to present a method for computing these 
correlations in a unified fashion which also allows for 
nonlinear associations. 
 

II.METHOD 

A.Correlation defined as 

€ 

R2 of a linear model 
In multiple linear regression, the coefficient of 

determination, R2, accounts for the variation in the response 
that can be explained by the predictors. It is well-known that 
for simple linear regression, R2 is exactly equal to the square 
of the correlation coefficient, r2. This connection between R2 
and r2 can be used to define measures of nonlinear correlation 
[27]. Specifically, a (nonlinear) correlation coefficient can be 
defined as the square root of R2 of any regression model, even 
if the model includes nonlinear terms. For example, the square 
root of the R2 of a polynomial regression model  relating two 
variables serves as a measure of nonlinear correlation between 
the variables.  

Defining the correlation coefficient as 

€ 

R2  has the 
additional advantage of utilizing partial sum-squared and 
extra sum-of-squares to measure partial correlations between 
a response and each of multiple predictors [1], [28]. Loosely 
speaking, a partial correlation between y and a given predictor 
measures the association between the two but after the 
remaining predictors have been taken into account.   

B.Within-group and between-group correlation via extra 
sum-of-squares  

Having established that 

€ 

R2  of a linear model is a more 
general and flexible measure of correlation than r, we turn to 
the problem of decomposing R2 into components measuring 
within-group and between-group correlation. The details of 
the decomposition are presented in the Appendix; here, we 
will show that 

€ 

R2total , 

€ 

R2within  and 

€ 

R2between  can all be 
computed from variations on a single linear model. 

In multiple regression, the analysis of variance is often 
performed in what is called sequential analysis of variance 
[1]. A common format for presenting the results of that 
analysis is shown in (1). The first line shows the equation of 
the model; the response is denoted by y, the predictors are x1, 
x2, …, and ε is the error term. The term 

€ 

SS(βi | β j ,βk ,...)  is 
called the extra sum-of-squares (SS), and it measures the 
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contribution to the total sum-squared of y that can be 
explained by xi above and beyond the amount already 
explained by xj , xk , etc. The estimates of the parameters are 
usually based on a least-squares criterion, in which case 

€ 

SSE(β0,β1,β2,...)  is the minimum value of the sum of the 
squared errors. The quantities reported in this format are 
precisely the necessary ingredients for computing the R2 

contribution of each of the predictors in the regression model 
[1].  

€ 

y = β0 + β1x1 + β2x2 + ...+ε
x1 : SS(β1 | β0 )
x2 : SS(β2 | β0,β1)
...
Error : SSE(β0,β1,β2 ).

  
(1) 

Specializing the format in (1) to the problem at hand, the ith 
response (ICP) for the jth patient is denoted yij , and the two 
predictors are the patient label i, and ZFP, denoted xij . Then, 
the model in (1) can be written in notation more traditional in 
linear modeling:  

€ 

yij = µ +τ i + βxij +ε ij
τ : SS(τ | µ )
x : SS(β | µ,τ )
Error : SSE(µ,τ ,β),

  
(2) 

where τi is a factor encoding the group corresponding to the ith 

patient, β is a slope parameter common to all patients, and µ is 
the y-intercept. All of these parameters are estimated from 
data, via some criterion - usually the ordinary least-squares 
(but, see below). 

In performing statistical hypothesis testing, the total R2 of 
this full model is contrasted with that of a reduced model [1]. 
For example, to test the significance of the factor τi the 
reduced model is that shown in (3):  

€ 

yij = ′ µ + ′ β xij + ′ ε ij
x : SS( ′ β | ′ µ )
Error : SSE( ′ µ , ′ β ).

  
(3) 

Similar reduced models, excluding other parameters, are used 
to test the significance of the “missing” parameter. 

A special case of the model shown in (3) is obtained by 
summing over the j index: 

€ 

yi. = ′ ′ µ + ′ ′ β xi. +ε i.
x : SS( ′ ′ β | ′ ′ µ )
Error : SSE( ′ ′ µ , ′ ′ β ).

  
(4) 

where “.” denotes sample average over the corresponding 
index. 

As shown in the Appendix, the full model in (2), and the 
two reduced models (3) and (4), each lead to the following R2 

values:  

€ 

R2total =
SS( ′ β | ′ µ )

SS( ′ β | ′ µ ) + SSE( ′ µ , ′ β )

R2within =
SS(β | µ,τ )

SS(β | µ,τ ) + SSE(µ,β,τ )

R2between =
SS( ′ ′ β | ′ ′ µ )

SS( ′ ′ β | ′ ′ µ ) + SSE( ′ ′ µ , ′ ′ β )

  (5) 

That R2 can be written as ratios of the form SS/(SS+SSE) is not 
surprising [1], [2]; however, it is somewhat unexpected that 
the full model in (2) in fact leads to the within-group 
contribution to R2, and it is the reduced models which yield 
the total and the between-group contributions. This may seem 
counter-intuitive, but it can be understood by noting that the 
slope parameter in the full model (2) is common to all 
patients, and so, any SS computed from that model is apt to 
refer to some within-group characteristic. The linear model (2) 
for computing the within-group correlation has also been 
considered in [28]. Further motivation for why we have called 
the specific ratios in (5) “total”, “within”, and “between” can 
be found in the appendix. Then, we define the respective 
correlations as the square-root of the corresponding R

2: 

€ 

rtotal = R2total

rwithin = R2within

rbetween = R2between

  (6) 

Recall that in the standard analysis of variance, it is the 
sum-of-squares (SS), not variance, which is decomposed and 
written as SStotal = SSwithin + SSbetween;  the total, within-group, 
and between-group variances (derived from the corresponding 
SS) do not follow this type of additive property. Similarly, in 
decomposing correlation, rtotal is not equal to the sum of rwithin 
and rbetween. However, there does exist a simple relationship 
between them; see (10). 

III.APPLICATION TO ICP 
Table 1 shows all the relevant quantities arising in the full 

model and reduced models shown in (2), (3), and (4). It is 
important to point out that the R2 values shown in that table 
are not the R2 that would ordinarily accompany the analysis of 
variance for each of the models shown in the table; the latter 
are usually total R2 values for the respective models. The R2 
values reported in Table 1 are computed from (5). Similarly, 
the quantities reported as r are computed from (6). 

As mentioned previously, an advantage of defining 
correlation in terms of R2, and therefore SS, of linear models is 
that each SS is generally accompanied by a p-value, testing the 
null hypothesis that the true/population SS is zero. As such, 
the p-values corresponding to the SS terms in the models (2), 
(3), (4), provide a test of the corresponding correlation. For the 
problem at hand, all three p-values are smaller than any 
conventional choice of significance level (e.g., 0.05, or 0.01). 
As such, there is considerable evidence from data that the 
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true/population correlations are nonzero. 
The total, within-group, and between-group correlations 

reported in Table 1 (i.e., 0.506, 0.053, 0.519) may be 
compared with the naive measures discussed in the 
Introduction: 0.506, 0.070, 0.519. Evidently, for the problem 
at hand, the total and between-group correlations obtained 
from the proposed method are equal (to at least three decimal 
places) to the naive estimates; but the two within-group 
correlations are different. This result is not a general result, 
but is approximately true if/when the group-conditional 
sample sizes are comparable across the different groups. 
Given this close agreement between the intuitive measures and 
those obtained from linear modeling, one may wonder what 
has been gained by the proposed method, as compared to 
using the naive estimates. The answer is that the three 
estimates in (6) are based on a rigorous decomposition of 
variation and covariation (see (8)), leading to an additive 
property (see (10)) that is not satisfied by the naive estimates.  

IV.SUMMARY, CONCLUSION AND DISCUSSION 
We have shown that it is important to assess the correlation 

between two quantities in terms of within-group and between-
group correlations. A method is put forth which allows the 
computation of these quantities from a sequential analysis of 
variance performed on a single, linear model. Defining 
correlation in this manner has the advantage of allowing 
nonlinear correlations; all one must do is to add nonlinear 
terms to the right-hand-side of the linear model. (Note: such 
an addition still yields a linear model, because the model is 
linear in its parameters.)  Additionally, significance testing of 
the correlations is then equivalent to significance testing of 
sum-squared terms, which are commonly reported in analysis 
of variance tables generated by most modern statistical 
routines. Finally, the three correlations defined this way 
follow the desirable feature of being based on an exact 
decomposition of sample variation and covariation. 

The application of the method to a data set of 200 invasive 
measurements and noninvasive estimations/predictions of ICP, 
on 104 patients, yields rtotal=0.506, rwithin=0.053, 
rbetween=0.519, all with near-zero p-values. As such, data 
provide significant evidence that all three correlations are 
nonzero. However, the relatively small magnitude of the 
within-group correlation suggests that ZFP is not useful for 
estimating ICP at any given time, for any given patient. By 
contrast, the relatively larger between-group correlation 
suggests that ZFP is more useful for estimating the mean (over 
time) ICP of individual patients. 

For the data set at hand, nonlinear extensions of the models 
(2), (3), and (4), do not lead to significantly different results, 
and are therefore not presented here. 

APPENDIX 
In this appendix, we will show the relationship satisfied by 

the three correlations. To that end, it is convenient to define 
the following quantities: 

€ 

Txx = (xij − x.. )
2

ij
∑

Tyy = (yij − y.. )
2

ij
∑

Txy = (xij − x.. )(yij − y.. )
ij

∑
Wxx = (xij − xi.. )

2
ij

∑
Wyy = (yij − yi. )

2
ij

∑
Wxy = (xij − xi. )(yij − yi. )

ij
∑

Bxx = (xi. − x.. )
2

i
∑

Byy = (yi. − y.. )
2

i
∑

Bxy = (xi. − x.. )(yi. − y.. ).
i

∑

  (7) 

In these expressions xij and yij refer to the jth value of x (ZFP) 
and y (ICP) for the ith patient. A “.” indicates the sample 
average over the corresponding index. For example, xi. is the 
sample mean (over time) of x for the ith patient. Note that these 
quantities satisfy the desirable additive property: 

€ 

Txx =Wxx +Bxx
Tyy =Wyy +Byy
Txy =Wxy +Bxy .

  (8) 

The labels T, W, and B are intended to correspond to Total, 
Within, and Between. The quantities with “xx” and “yy” 
subscripts are measures of sample variation, and the terms 
with “xy” subscripts measure sample covariation [2, p. 576].  
It follows from (5) that   

€ 

R2total =
Txy

2

TxxTyy

R2within =
Wxy

2

WxxWyy

R2between =
Bxy

2

BxxByy
.

  (9) 

When the quantities T, W are estimated via a least-squares 
criterion, and the quantities B are estimated via a weighted 
least-squares criterion, then it follows that 

€ 

TxxTyy rtotal =

WxxWyy rwithin + BxxByy rbetween .
  (10) 

It is worth emphasizing that this (desirable) decomposition of 
correlation is possible only if the expressions for Bxx, Byy, Bxy 
in (7) include the term ni . In turn, the presence of this term 
requires minimizing the weighted SSE, with ni as the weights.  
In short, an ordinary least-squares fit of models (2) and (3), 
but a weighted least-squares fit of model (4), is necessary for 
the decomposition of correlation in (10) to be possible. Such a 
decomposition of correlation has also been considered in [29], 
but without proof or derivation. 
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Fig. 1.   Illustration of Simpson’s paradox. The correlation 
coefficient between x and y within each cluster is 0.9, but the 
overall correlation coefficient is 0. 
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Fig. 2.   Scatterplot of 200 measurements of ICP and ZFP for 
104 patients (in different colors). Depending on the patient, 
there is a positive correlation, a negative correlation, or no 
correlation at all between ICP and ZFP.  Overall, i.e., 
between the patients, there is a positive  correlation between 
ICP and ZFP.   

 
Fig. 3.   Scatterplot of mean ICP and mean ZFP for 104 
patients, with the mean taken over different times. The 
appropriate measure of association is the correlation 
coefficient between group, here 0.519.  

 
Fig. 4.   Histogram of the104 correlations within group.   

TABLE I 
CORRELATION TOTAL, WITHIN, AND BETWEEN GROUPS  

Model SS R2 r p 

Total 

€ 

SS( ′ β | ′ µ ) =981800.1 

€ 

SSE( ′ µ , ′ β ) =2857453 
 
0.256 

 
0.506 

 
~0 
 

Within 

€ 

SS(β | µ,τ ) = 210.4 

€ 

SSE(µ,τ ,β) =74190.2 
 
0.003 

 
0.053 

 
~0 
 

Between 

€ 

SS( ′ ′ β | ′ ′ µ ) =1013173 

€ 

SSE(µ ′ ′ , ′ ′ β ) =2751680 
 
0.269 

 
0.519 

 
~0 

 
 


