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ABSTRACT

The verification of a gridded forecast field, for example, one produced by numerical weather prediction

(NWP) models, cannot be performed on a gridpoint-by-gridpoint basis; that type of approach would ignore

the spatial structures present in both forecast and observation fields, leading to misinformative or non-

informative verification results. A variety of methods have been proposed to acknowledge the spatial

structure of the fields. Here, a method is examined that compares the two fields in terms of their variograms.

Two types of variograms are examined: one examines correlation on different spatial scales and is a measure

of texture; the other type of variogram is additionally sensitive to the size and location of objects in a field and

can assess size and location errors. Using these variograms, the forecasts of three NWP model formulations

are compared with observations/analysis, on a dataset consisting of 30 days in spring 2005. It is found that

within statistical uncertainty the three formulations are comparable with one another in terms of forecasting

the spatial structure of observed reflectivity fields. None, however, produce the observed structure across all

scales, and all tend to overforecast the spatial extent and also forecast a smoother precipitation (reflectivity)

field. A finer comparison suggests that the University of Oklahoma 2-km resolution Advanced Research

Weather Research and Forecasting (WRF-ARW) model and the National Center for Atmospheric Research

(NCAR) 4-km resolution WRF-ARW slightly outperform the 4.5-km WRF-Nonhydrostatic Mesoscale

Model (NMM), developed by the National Oceanic and Atmospheric Administration/National Centers for

Environmental Prediction (NOAA/NCEP), in terms of producing forecasts whose spatial structures are

closer to that of the observed field.

1. Introduction

Numerical prediction models typically produce a

gridded forecast of some quantity. Observations are

generally gathered at specific points, not on a grid, and

then interpolated to the grid using various numerical or

dynamic methods. The problem of assessing the quality

of the forecasts, therefore, is equivalent to the problem

of comparing two gridded fields, or two digital images.

The comparison of the two fields can be done in nu-

merous ways. The simplest methods compare (e.g.,

subtract) the two images from one another pixel by

pixel. This method, however, is inadequate because,

for example, it does not reward a forecast for producing

the correct structure of the field and penalizes it harshly

for not placing the structure in the correct place. Such

issues have given rise to a variety of spatial verification

methods. A taxonomy of the methods has been at-

tempted by Casati et al. (2008), but an admittedly im-

perfect classification can be based on the emphasis

placed on the spatial covariance structure of the fields.

The following is a sample of references where many

attributes of forecast performance are provided, but

the underlying methods place less emphasis on the co-

variance structure: Baldwin et al. (2002); Briggs and

Levine (1997); Brown et al. (2002), (2004); Bullock et al.

(2004); Casati et al. (2004); Chapman et al. (2004);

Du et al. (2000); Ebert (2008); Ebert and McBride

(2000); Hoffman et al. (1995); Marzban and Sandgathe

(2006), (2007), (2008); Marzban et al. (2008); Nachamkin

(2004); Roberts (2005); Skamarock (2004); Skamarock

et al. (2004); and Venugopal et al. (2005). At the other
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extreme, some of the main works that place more em-

phasis on the covariance structure of the fields are those

of Gebremichael et al. (2004), Germann and Joss (2001),

Germann and Zawadzki (2002), Harris et al. (2001), and

Zepeda-Arce et al. (2000). This classification is by no

means exclusive; for example, Skamarock (2004) and

Skamarock et al. (2004) could belong to the latter

group, because they rely on spectral analysis, which is in

turn related to the covariance structure of the field. The

current work belongs to the second group, because the

role played by the spatial covariance structure of the

fields is central and explicit. However, as shown below,

the variogram can be computed in two distinct ways:

one places it more in the spectral domain, while the

other conveys information that one may easily consider

object oriented.

Although from a meteorological point of view it is

perfectly reasonable to view a forecast field in terms of

its constituent objects, there are numerous other facets

of a forecast that are also important in assessing the

quality of the forecasts. At the most basic level, one may

compare two fields in terms of the mean of the variable

of interest (e.g., precipitation or reflectivity) across the

entire field. Another interesting measure is the variance

of the variable. Both of these measures are directed at a

comparison of the distribution (or histogram) of the two

fields. In this line of thinking, the underlying question is

whether or not the distribution of the variable across the

forecast field is comparable to that observed.

Such a verification method implicitly accounts for a

number of summary measures that are relevant to me-

teorologists, including the mean and the variance of the

forecast variable across the field. However, a distribu-

tion does not assess how quickly the variable changes

from grid point to grid point. In other words, the dis-

tribution of the variable conveys no information on the

spatial structure of the field. This spatial structure is an

important facet of the quality of the forecast field. Also,

it is evident that the spatial structure is a concept that is

contingent on the spatial scale. For example, a given

field may have a complex spatial structure on very small

scales and an almost trivial spatial structure on the large

scale. Said differently, the comparison of the spatial

structure of a forecast field to that of an observed field

must be performed within a framework that allows for

an exploration of different spatial scales.1

In image processing circles, one notion of spatial

structure is called texture. It is a measure of the grain-

iness of an image (i.e., field) and assesses how quickly

changes occur as a function of distance. In spatial sta-

tistics (Cressie 1993; Ripley 1991), a quantity called a

variogram effectively gauges texture. Intuitively, and

loosely speaking, it quantifies the spatial extent of cor-

relations. If the value of the variable changes between

two pixels (i.e., two grid points) in some incoherent way,

then one can conclude that the underlying variable has

no correlation on the scale separating those pixels. By

contrast, if distant pixels vary in some coherent fashion,

then one may suspect an underlying spatial correlation

that extends to long distances. These ideas are made

more formal in the next section, where the defining

equation for the variogram is given.

Variograms have already been employed in many

meteorological applications, quite apart from verifica-

tion problems. Given that they appear naturally within

the context of interpolation, most applications utilize

variograms within that context. For example, Sxen (1997)

uses variograms as a basis of an interpolation scheme

for performing analysis in NWP models. Greene et al.

(2002) utilize kriging (Cressie 1993)—wherein one fits

variograms—to interpolate wind fields. Germann and Joss

(2001) use variograms to find the spatial variation of the

precipitation rate in the European Alps, the dependence

of this rate on temporal and spatial averaging, and how

precipitation measurements from two or more instru-

ments can be compared. Germann and Zawadzki (2002)

utilize a correlation function motivated in Germann and

Joss (2001) to address the temporal extent to which

precipitation is predictable as a nonlinear response in a

dynamic model; they, too, rely on variograms for sum-

marizing the spatial structure of the field. Berrocal et al.

(2007) use concepts from spatial statistics at large to

improve the quality of probabilistic forecasts.

As for verification, the comparison of two fields in

terms of their spatial structures has been pioneered by

Gebremichael et al. (2004), Germann and Joss (2001),

Germann and Zawadzki (2002), Harris et al. (2001), and

Zepeda-Arce et al. (2000). The current work is more

closely connected with Harris et al. (2001), wherein

three methods are described: one based on spectral

analysis, one based on a generalized structure function,

and another called moment-scale analysis. Of particular

relevance to the current work is the second method

wherein a generalized structure function for a spatial

variable Z is defined as E[jZ(x 1 y) 2 Z(x)jq]. The

special case with q 5 2 is equal to the variogram. They

focus on q 5 1 because of three reasons. First, the

structure function with q 5 1 is more robust with respect

to outliers in the increment jZ(x 1 y) 2 Z(x)j. Second,

the q 5 1 structure function allows for scaling relations

that are naturally connected to the Hurst exponent in

the theory of turbulence (Davis et al. 1996). Finally,

1 The term scale has different meanings in different fields.

Throughout this article, it refers to a physical distance.
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the q 5 1 results are used for performing their third

method, that is, the moment-scale analysis. In spite of

these arguments in favor of q 5 1, in this paper the or-

dinary variogram (i.e., q 5 2) is employed, and for the

following reasons: First, we have confirmed that the dis-

tribution of the increments does not suffer appreciably

from outliers, and when unambiguous outliers do exist,

their effects are tamed because of a resampling procedure

described below. Second, within the context of verifica-

tion, there is no need to relate variograms to scaling re-

lations arising in the theory of turbulence. Finally, this

article does not perform the moment-scale analysis.

There is one other difference between the current

work and the other aforementioned spatial methods,

and that relates to spatial intermittency, or the mixed

discrete-continuous nature of reflectivity and precipi-

tation fields (Kundu and Bell 2003; Sapozhnikov and

Foufoula-Georgiou 2007). This issue is further ad-

dressed in the next section. Here, suffice it to say that

the above-mentioned studies perform their analyses on

only the portion of the field where the forecast variable

is nonzero. For fields like reflectivity or precipitation

this is a problem, because the spatial structure of the

field is highly sensitive to the inclusion of the zero re-

gions. Yoo and Ha (2007) specifically examine the ef-

fects of zero measurements on the correlation structure

of rainfall. In the current study, both analyses are per-

formed—with and without the inclusion of the zero

regions—because they capture different facets of the

quality of the forecasts. As will be shown below, these

variograms are capable of revealing that the NWP

models generally overforecast the spatial extent of

features and that they oversmooth the reflectivity field.

It is worth mentioning that the variogram-based ap-

proach does not provide a complete assessment of fore-

cast quality. Although, two different types of variograms

are computed here, capturing different facets of perfor-

mance, other performance measures should also be con-

sulted in order to provide a more complete picture. It

does, however, have a few virtues worthy of emphasis.

First, as shown below, the variogram can readily identify

the overuse of smoothing in NWP models. Also, it can be

computed from irregularly placed points (e.g., from the

true observations). As such, the variogram of the obser-

vations can be computed prior to analysis or interpolation.

In this article, after describing the data, and reviewing

the concept of a variogram, the methodology is illus-

trated on a number of synthetic examples, followed by

a verification of 24-h reflectivity forecasts from three

NWP formulations: the University of Oklahoma 51-

level, 2-km resolution Weather Research and Fore-

casting (WRF) model (arw2); the National Center for

Atmospheric Research (NCAR) 35-level, 4-km resolu-

tion WRF (arw4); and the National Oceanic and Atmo-

spheric Administration/National Centers for Environ-

mental Prediction (NOAA/NCEP) 35-level, 4-km NMM

(nmm4). A resampling approach is employed to provide

a measure of the sampling variation of the variogram.

The work ends with a number of conclusions, and a dis-

cussion of the underlying assumptions of the proposed

methodology.

2. The data

In addition to a few synthetic datasets, also examined

is a realistic dataset from the Storm Prediction Center/

National Severe Storms Laboratory (SPC/NSSL) Spring

Program 2005 (Weiss et al. 2005) involving pairs of

observations and 24-h forecasts of reflectivity. The dates

span from 19 April to 4 June 2005, and have been in-

terpolated onto a polar stereographic grid with a grid

interval of approximately 4 km. Thirty dates are se-

lected, for which a matching pair of observation and

forecast exists, and all reflectivity values below 20 dBZ

are set to zero, in order to focus on only intense reflectivity

(corresponding to significant precipitation events). The

dimension of the field is 501 3 601 grid lengths. An

example of the data from one of the days is displayed in

Fig. 1, showing the spatial distribution of the observa-

tions and the 24-h forecasts according to arw2, arw4,

and nmm4, for 13 May 2005. The coordinates of the

four corners of the region are 308N, 708W; 278N, 938W;

488N, 678W; and 448N, 1018W—covering most of the

United States from the Rocky Mountains to the Eastern

Seaboard. All of the 30 observed fields are shown in

Fig. 2, but for brevity the corresponding forecast fields

from arw2 only are presented.

Since variograms measure the spatial structure of an

image, it is important to discuss how these fields are

produced. The observations are a mosaic of the cover-

age from the National Weather Service radar network.

The lowest radar tilt elevation is chosen, providing near-

contiguous coverage over the eastern United States.

The 24-h forecasts are for model reflectivity at 1-km

altitude. The aforementioned 20-dBZ threshold elimi-

nates much of the radar ground clutter from the ob-

servations, which is a result of choosing the lowest radar

tilt elevation. The radar observations increase in eleva-

tion as a function of distance from the radar due to both

the angle of the tilt above ground and the curvature of the

earth. Meanwhile, the model data are restricted to a

single elevation. Restricting the data to significant pre-

cipitation via the 20-dBZ threshold should reduce or

eliminate any impact this difference could have on the

spatial structure of the fields. Weiss et al. (2005), and

Baldwin and Elmore (2005) describe the development

of the data in more detail.
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The variogram is sensitive to the resolution of the model

or analysis. In the examples considered here, the radar-

observed reflectivity smoothed to a 4-km grid is compared

to 4-km horizontal resolution models and a subsampled

2-km resolution model. This consistency among the sam-

pling resolutions is critical to variogram interpretation.

Also, and more critical, the observed fields are not truly

observed; they are all an interpolation of the observations

using various algorithms as applied to a grid at a specified

resolution. Modern data assimilation systems employ a

variety of quality control metrics, as well as dynamical and

other constraints, to massage observations into an ‘‘anal-

ysis.’’ This can have a significant effect on the texture or

smoothness of the field and should be carefully consid-

ered. This ‘‘computational smoothing’’ (Harris et al.

2001) of the observation field when comparing a model of

much lower resolution may be advisable; even smoothing

(or subsampling) a very high-resolution model to the

scale of the observations may be necessary as one goes to

subkilometer model resolutions.2

3. Methodology

The spatial structure of a field can be summarized in

numerous ways, but three common measures are the

autocovariance, the autocorrelation, and the variogram

(Cressie 1993; Ripley 1991). For a field Z(x), where x

denotes spatial coordinates, they are defined as

cov[Z(x), Z(x 1 y)],

cov[Z(x), Z(x 1 y)]/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V[Z(x)]V[Z(x 1 y)]
p

,

V[Z(x)� Z(x 1 y)],

(1)

where Z(x 1 y) is the field value a distance y away from

x, and V and cov are the variance and covariance op-

erators with respect to some probability density func-

tion (pdf). In general, all three quantities depend on x

and y; however, if the pdf of the field Z is constant in

space—a condition referred to as stationarity—then all

three quantities depend only on the distance y between

points. In that case, they are usually called the autoco-

variance function, the autocorrelation function (or

correlogram), and the variogram, and are plotted as a

function of the distance y. There are two other condi-

tions, both weaker than stationarity, that are assumed

frequently. The first, called covariance stationary (or

second-order stationary), refers to the condition wherein

FIG. 1. The spatial distribution of the observation field, and the three forecast fields according to

arw2, arw4, and nmm4 for 13 May 2005.

2 An interesting test would be to compare the variograms of

several different operational analyses or forecasts. Variograms

would reveal the overuse of smoothing within a model or, more

likely, the use of specific algorithms that have a secondary effect of

smoothing the forecast field.
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FIG. 2. (top) The 30 observation fields, with reflectivity exceeding 20 dBZ, examined here and (bottom) the corresponding arw2 forecasts.
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only the first two moments of the pdf are constant in

space. Under this condition, all three quantities depend

only on the distance y. An even weaker condition, re-

ferred to as the intrinsic hypothesis (Matheron 1963),

refers to when only the variogram depends on y. This is

a weaker condition than either form of stationarity be-

cause it refers to the variance of the difference between

variables. It is this more general condition that has led

to the variogram being used more frequently than the

other two measures. As in the verification of nonspatial

fields, the choice of these measures is not unique. Al-

though the other two quantities can also be considered

to be verification measures, and may even lead to dif-

ferent conclusions, because of the popularity of the

variogram it is selected here as a summary measure of

the spatial structure of the field.

Throughout this paper a variogram refers to what is

technically an empirical (semi-) variogram, namely an

estimate of that mentioned above. Specifically, the es-

timate used here is the method-of-moments estimator

computed as

g(y) 5
1

2N
�
N

i,j
(z

i
� z

j
)2, (2)

where zi is the value of the field measured at some

number of locations labeled by an index i. The sum is

over all pairs of points a distance y apart, and N is the

number of such pairs. A variogram refers to the plot

of g(y) as a function of distance y. Given that it is a

function of distance, and not a distance from any specific

point (like an origin), it summarizes how much the value

of the variable Z varies between points, as a function of

scale. The points may be regularly or irregularly spaced,

but in all of the examples considered in this work, the

field is defined on a square grid. Consequently, not all

values of y occur in a sample. Generally, some binning is

called for in order to produce a reasonably continuous-

looking variogram. Two useful properties of the vario-

gram follow from Eq. (2): 1) the variogram of a sum of

two fields is equal to the sum of the variograms; as a

result, adding a constant to a field, does not affect the

variogram, but 2) multiplying the field by a constant

leads to the variogram being multiplied by the square of

that constant.

In spatial statistics, the general shape of the vario-

gram is often relatively simple: beginning low, rising,

and eventually leveling off. For this reason, one often

summarizes the variogram with three quantities: the y

intercept, the limiting value of the variogram over large

scales, and the distance at which that value is obtained;

these quantities are called the nugget, the sill, and the

range, respectively (Cressie 1993). The nugget reflects

the variability at distances smaller than the sample

spacing. The sill refers to the maximum variance reached

by the variogram, and the range is the distance at which

the sill is reached. In principle, measurements separated

by distances larger than the range are uncorrelated.

The autocovariance function and the autocorrelation

function are closely related to the power spectrum (or

variance spectrum, or periodogram) in Fourier spectral

analysis. Specifically, the Fourier transform of one is

equal to the other. Spectral methods have already been

employed for verification purposes (Briggs and Levine

1997; Casati et al. 2004; Skamarock 2004; Harris et al.

2001). For example, Skamarock (2004) and Skamarock,

et al. (2004) show that the kinetic energy spectrum of

WRF agrees with the observed spectrum. As such, one

may expect that verification based on variograms may

not add information beyond spectral methods. How-

ever, there are at least four reasons that warrant a

variogram analysis. 1) The information contained in a

variogram is equivalent to that in the autocovariance

(and autocorrelation) function only under the condition

of stationarity. As mentioned above, the assumption

underlying the utility of the variogram is weaker than

stationarity or even covariance stationarity. Given that

most realistic fields are unlikely to strictly satisfy any of

these conditions, the variogram is apt to provide infor-

mation different from that in a spectral analysis. 2)

Another technical reason to examine the variogram is

related to its estimation. Cressie (1993, section 2.4)

notes that the estimate of the autocorrelation function is

sensitive to bias and trends in the field. Furthermore,

that estimate is sensitive to deviations from the nor-

mality of Z. The estimator for the variogram g(y) de-

pends only on the differences in the field values and, so,

is less affected by such deviations. 3) In a verification

setting, variograms are more natural because they make

the spatial scale explicit, without the need to perform

any Fourier transformation into frequency space. 4)

Even in applications unrelated to verification, vario-

grams generally provide different information than

power spectra. For example, Maillard (2001) compares

and contrasts the two methods for texture classification

and finds that the variogram approach slightly outper-

forms the Fourier spectral method. Mela and Louie

(2001) use both methods for estimating correlation

length and fractal dimensions; they argue in favor of

using both methods because of the added interpret-

ability of the data.

As mentioned in the introduction, an important issue

that arises in modeling reflectivity or precipitation fields

is the spatially intermittent nature of the field, reflected

in a distribution that has a delta-function peak at zero.

Nonzero precipitation can be well modeled with a
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lognormal distribution, but a realistic forecast field

consists of many grid cells at which the precipitation is

zero. Many methods have been proposed for addressing

the mixed discrete-continuous nature of such fields

(Kedem et al. 1990; Barancourt et al. 1992). The latter

work proposes an idea that is more conducive to the

approach adopted here, because it relies directly on

variograms. Specifically, first, one approximates the

field with a binary field, where any nonzero precipita-

tion is replaced by a constant. In spatial statistics, this

type of categorical variable is referred to as an indicator

variable (Journel 1983). The interpolated field, then,

models only the intermittent component of the field;

through interpolation (kriging), it highlights regions

where the precipitation is nonzero. Finally, the varia-

bility of the nonzero precipitation values is then as-

sessed by examining the spatial structure of the fields

within these regions. In this way, the authors refer to

the variability captured in the latter as the ‘‘inner vari-

ability.’’

This two-step procedure is computationally intensive

and is worthwhile if modeling the field is the focus of

the work. Even for verification purposes, this decom-

position of the variability into ‘‘inner’’ and ‘‘outer’’ is

important, but only in diagnosing–decomposing the

forecast errors. However, in a situation where several

forecast models are to be compared, objectively and

automatically (without human intervention), it is more

desirable for a performance measure to provide a more

all-embracing assessment of the forecast quality, be-

yond size and displacement errors. To that end, a var-

iogram is computed across the entire field (i.e., zero and

nonzero grid points). Such a variogram would be sen-

sitive to size, shape, displacement, and intensity errors.

By contrast, one can compute the variogram across

only the nonzero grid points. In this work, both sets

of variograms are computed: one across only nonzero

grid points and another across the entire field. The

former assesses the texture of the field and is useful

for comparing the spatial properties of the two

fields, but it does not include size and displacement

errors. The second set of variograms does include that

information.

To gain some sense of the sampling variation of the

variograms, two resampling approaches are adopted.

One is a standard bootstrap approach where samples of

the same size as the original sample are taken, with

replacement, from each field, and the variogram is

computed. The number of bootstrap trials is 40, but it

has been confirmed that a number of trials as small as

10 yields similar results. This bootstrap approach is used

when the variogram is computed across only nonzero

portions of the field. To apply the same procedure to the

entire field is possible but computationally infeasible;

instead, samples of size 50 000 are taken from each field,

without replacement, again 40 times. Technically, nei-

ther approach yields proper confidence intervals, pre-

cisely because of the spatial structure of the fields. There

exist many variations of the standard bootstrap that do

allow for spatial (and temporal) correlations in the data;

subsampling (Politis et al. 1999), and the block boot-

strap (Politis and Romano 1994) are but two. However,

the extra effort is not worthwhile in the current appli-

cation, because confidence intervals in the strict sense of

the concept are not necessary; the purpose of the in-

tervals produced here is simply to convey a general

sense of the variability. Suffice it to say that proper

confidence intervals would be wider than any computed

here. In fact, in this work, the sampling variation of the

variograms is displayed through box plots, rather than

individual intervals. This way, one obtains a more

complete picture of the sampling distribution of the

variogram.

Finally, given that the primary aim of this study is

model comparison, for the purpose of selecting the

‘‘better’’ model, it is important to decompose the sam-

pling variation reflected in these box plots into ‘‘within

day’’ and ‘‘between day’’ components, because it is the

latter that is important in selecting the better model.3

This is further explained in section 5.

4. Synthetic examples

It is instructive to consider a few synthetic examples

in order to develop an intuition for the type of vario-

gram associated with a given field. The top panel in

Fig. 3 shows a background consisting of a random field

with an ‘‘object’’ introduced at a specific location. The

background is an uncorrelated field generated by a se-

quence of floating-point random numbers uniformly

distributed between 0 and 1. The ‘‘object’’ is a bivariate

Gaussian with parameters mx 5 my 5 30, sx 5 sy 5 30/4,

r 5 0, contaminated by the same fluctuations as the

background. The variogram associated with the field

alone (excluding the object) coincides with a horizontal

line with a y intercept given by the variance of the

variable across the entire field; this variogram is shown

in the bottom panel of Fig. 3 as a dashed horizontal line.

The nontrivial variogram also shown in the bottom

panel (as a sequence of circles) is that associated with

3 This terminology is based on the standard terminology in the

analysis of variance, where the variance in a nonhomogeneous

sample is decomposed into its within-group and between-group

variances.
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the field including the object. As mentioned above, the

bin size for the quantity denoted ‘‘distance’’ is chosen so

as to produce a reasonably continuous curve.4

Several features are noteworthy. First, note that the

object is approximately 15 grid lengths (or pixels)

across, and it is centered at (30,30). From left to right,

the first vertical line is at 15, that is, the size of the

object, where one can see a slight bend in the vario-

gram. The next bend is at 30, that is, the location of the

object. The next line is at 30
ffiffiffi

2
p

, which is the distance

between the center of the object and the origin. The

line at 70 also corresponds to a bend in the variogram;

note that 70 5 100 2 30 is the distance between the

center of the object and the right-most side of the field.

Finally, the distance between the object and the upper-

right corner of the field is 70
ffiffiffi

2
p

, and this line is the

right-most vertical line drawn in the variogram plot. At

each of these values, corresponding to either the size of

the object or its distance from the various sides of the

field, the variogram displays some sort of a bend. In

other words, the shape of the variogram is determined

by the size and location of the objects in the field.

Needless to say, the size of the grid can also affect the

variogram.

This variogram can be explained intuitively by imag-

ining a stick of some length sliding across the field. For a

small stick, that is, on small scales, the variogram tends

to increase with distance because as the stick gets larger

the typical size of (zi 2 zj)
2 increases. However, the rate

of change (i.e., the slope of the variogram) is affected

when the stick is large enough so as to not fit entirely

inside the object. On such scales, at least one end of the

stick is outside the object, and so, the spatial coherency

of the object causes the variogram to increase at a lower

rate, hence, the bend at 15. Other changes occur when

the stick is sufficiently large to extend from the object

to the edges of the field—at 30 and 70. On these scales

the variogram decreases with increasing distance be-

cause relatively more sticks have both ends outside of

the object. As such, the variogram is driven toward the

variogram of the background (i.e., the horizontal line).

That convergence is complete when the stick is larger

than the largest possible stick that allows for no end of

the stick to be within an object, namely at 70
ffiffiffi

2
p

. The

slightly increasing trend between 30
ffiffiffi

2
p

and 70 arises

because the size of the object allows for one end of the

stick to be inside the object, thereby partially compen-

sating for the convergence to the background value. In

short, whereas a smooth continuous field might gener-

ate a smooth variogram (usually increasing with dis-

tance), an object placed within the boundaries of a

square box will generate variograms resembling that in

Fig. 3. Although, it is not shown here, a larger object

tends to produce a variogram that extends farther in the

vertical direction.

As mentioned in the previous section, the nugget, the

sill, and the range are often sufficient to capture the

general shape of the variogram. For the variogram in

Fig. 3, however, all of these quantities are ambiguous.

The nugget may be considered to be at 0 or at 1.7 (the

horizontal line). The sill may be considered to be at 2.5

where the variogram reaches its peak, or 1.7 where it

levels off. Consequently, the range is also completely

ambiguous. These ambiguities arise because of the

mixed discrete-continuous nature of the field.

Although many realistic fields have objects within

them, the actual nature of the fields is more continuous

than a disc placed against a uniformly distributed back-

ground. More realistic examples are offered by consid-

ering a random Gaussian field. Such a field is more re-

alistic, because it is still a random field, but the field

itself displays some nonrandom structure, mimicking

the object of the previous example. Figure 4 shows

one such field (top-left panel; this field is generated by

GaussRF, a function in an R package called Random-

Fields, which is freely available online at http://www.

r-project.org). The corresponding variogram is shown in

FIG. 3. (top) A synthetic field consisting of a uniform back-

ground and a well-delineated object. (bottom) The variogram of

the uniform field (dashed horizontal line) and that of the whole

field including the object. The vertical lines are described in the

text.

4 The role of the bin size in variograms is exactly the same as the

role of the bin size in histograms. Its determination is part science,

part empirical.
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the top-right panel of Fig. 4. As expected, the variogram

generally increases with distance, with some humps and

bumps caused by the structure of the field.

A random Gaussian field is defined in terms of nu-

merous parameters, all of which visually affect the field

and the corresponding variogram. For example, the top

field in Fig. 4 is generated with mean 5 0, variance 5 4,

and nugget 5 1. The bottom field in Fig. 4 shows the

same field but with the nugget parameter set to 0. The

visual effect is an overall smoothing of the field. This

change in the nugget is also reflected in the y inter-

cept of the variograms. In other words, increasing the

nugget generally produces more texture in the field,

resulting in an upward shift of the variogram, without

affecting its overall shape. It turns out that this type of

behavior is, in fact, seen in the real data examined in this

paper; for some days, the variogram of the observed

field is simply a shifted version of that of the forecast

field. In other words, the forecast and the observed

variograms differ only in their nuggets. The other pa-

rameters defining a random Gaussian field affect the

visual appearance of the field but in ways that are not

easily describable.

As a final synthetic example, consider the situation

depicted in Fig. 5. The top-left panel in Fig. 5 shows two

circular objects with a random Gaussian field interior,

placed against a background of zero values. The top-

right panel in Fig. 5 shows the same image shifted by

15 grid lengths in x and y. One may treat these two fields

as an observed and a forecast field, respectively. The

middle row shows the corresponding variograms com-

puted across the entire field (including the zero back-

ground); collectively their shape resembles that in Fig. 3

and can be explained in the same manner in terms of the

size and location of the objects. The panels in the bot-

tom row in Fig. 5 display the variograms computed over

only the nonzero portion of the fields, that is, over the

objects. These two variograms are identical, as they

FIG. 4. Examples of (left) random Gaussian fields and (right) the corresponding variograms.

The top field has a nugget of 1, while the nugget is zero for the bottom field. Lower nugget

values are generally associated with smoother fields, and vice versa.
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should be because they assess the texture of the field—a

quantity invariant under translation. As such, although

these variograms are measuring some facet of perfor-

mance, they do not reflect displacement errors. By

contrast, the middle variograms do. This example il-

lustrates the utility of computing both types of vario-

grams. One is more useful for assessing texture only,

while the other measures some combination of texture

as well as size, shape, and displacement errors. Clearly,

for an objective and automatic verification of a large set

of forecasts, the latter is more appropriate, for it is

sensitive to more types of errors.

5. Results

We consider 13 May 2005 first. On this day, a large,

occluded frontal system crosses the Midwest approach-

ing the Great Lakes. Figure 6 shows the variograms for

the observed field and for the three forecast fields (in

three colors), computed across the entire field (top), and

only the nonzero grid points (bottom). Each variogram

is actually a sequence of box plots, reflecting the sam-

pling variation of the variogram. They are produced by

taking 40 random samples from the fields (as described

in section 3) and producing the variograms for each

sample. Instead of plotting 40 different variograms, the

box plot of the variogram is plotted for every value on

the x axis (i.e., scale).5

In the top panel in Fig. 6, the general behavior of the

variogram for the observed field (black) is consistent

with the synthetic examples given above. The variogram

initially rises but only up to a scale of about 1000 km, at

which point it begins a decreasing trend toward the

background value. This behavior is consistent with the

existence of an ‘‘object’’ against a background field, as

FIG. 5. Examples illustrating the effects of a displacement error on the two types of vario-

grams. (top left) Two objects with a random Gaussian field interior, placed against a zero

background. (top right) The same image but with the objects shifted by 15 grid lengths in the x

and y directions. The corresponding variograms are shown in the second row (when it is

computed across entire field) and in the bottom row (when it is computed across only nonzero

grid points).

5 The line within a box gives the median of the 40 variograms,

the top and bottom sides of the box denote the third and first

quartiles, respectively, and the whiskers display the range of the

values. In this work, the width of the box plots is fixed, in the sense

that it does not convey any information.
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confirmed by examining the actual field (Fig. 1). The

background is clearly noiseless, with all grid values set

to zero (a consequence of the reflectivity threshold at

20 dBZ), and the object is the large frontal occlusion

over the Midwest. The peak of the variogram at dis-

tances of the order of 1000 km suggests that the system

is approximately of that size, or that it is about 1000 km

away from the boundary of the field. This ambiguity

may be troublesome if one desires to diagnose the

variogram unambiguously; however, loss of information

is an unavoidable consequence of any summary mea-

sure, and the variogram is no exception.

The arw2 simulation (red) produces a variogram

similar to that observed. However, there are regions in

the variogram where there is no overlap between the

box plots of the two variograms. Specifically, on short

scales (500–1000 km), and on long scale (.2000 km), the

arw2 variogram is higher than observed. By contrast,

FIG. 6. (top) The variogram for the observed field (black), and the arw2 (red), arw4 (green), and nmm4 (blue)

simulations. The box plots displaying the sampling variation are based on 40 resamples. (bottom) As in the top panel

but here the variograms are computed only for grid points with nonzero value.
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arw4 (green) produces a lower variogram on short

scales. nmm4 (blue) yields a similar variogram to arw4,

but only on smaller scales (,1400 km); on larger scales,

the variogram for nmm4 is clearly much higher than

that of the observed field, or of arw2 and arw4. One may

be tempted to attribute the higher variogram of the

nmm4 simulation on larger scales to the lower resolu-

tion of the model (4.5 versus 2 km for arw2); however,

that explanation would not be justified because another

low-resolution model, namely arw4, yields a variogram

comparable to both that of the observed field and of

arw2. In this case, the correct explanation of the dif-

ference can be seen in the actual forecast field; the

nmm4 forecast in Fig. 1 clearly has a more solid (i.e.,

more area exceeding the 20-dBZ threshold) feature in

the northwest region of the occlusion and is much more

scattered in the observed field as well as in the arw2 and

arw4 forecasts. It is this feature that gives rise to the

discrepancy on large scales. One may also wonder if

the higher value of the variogram for nmm4 on larger

scales is due to a larger extent of the reflectivity ex-

ceeding 20 dBZ because, as mentioned in section 4, a

larger object can produce a higher variogram. However,

as explained in the next section, that fact does not en-

tirely explain the higher variogram values, because all

three models produce larger areas of high reflectivity

than that observed.

The bottom panel in Fig. 6 shows the variograms

when they are computed only over nonzero grid points.

Again, the overall shape of these variograms is consis-

tent with that seen in the synthetic example (Fig. 5,

bottom row). Note that the three conventional summary

measures for a variogram—nugget, sill, and range—are

less ambiguous in these variograms, especially for nmm4;

although the three forecasts appear to have different

sills, their range is of the order of 200 km. In other words,

reflectivity values beyond 200 km are mostly uncorre-

lated. More importantly, whereas nmm4’s variogram

computed across the whole field (Fig. 6, top) is compa-

rable to that observed on smaller scales, according

to the bottom panel in Fig. 6, it tends to oversmooth

the field, much more so than in the arw2 and arw4

simulations.

It is worth pointing out that the box plots at longer

distances are larger mostly due to smaller samples. Given

a finite field, there exist more grid point pairs that are

close to one another than those farther away. In fact, on

the largest scale (e.g., ;3700 km) the variogram is based

on only the values of reflectivity on the boundary of the

field. This places a restriction on the largest scales, which

can be reasonably assessed. The size of the box plots is a

visual reminder of that scale. Moreover, the variogram at

larger scales is apt to be most affected by factors beyond

sampling. For example, forecasts near boundaries often

have different physical characteristics as compared to

those within a field. Also, the three NWP formulations

considered here have different physical properties in the

way the forecasts are generated near the boundaries. For

these reasons, the variogram for large scales should be

interpreted with caution.

Although other qualitative differences exist between

the variograms in Fig. 6—and their diagnosis can be

useful—from a model verification–selection point of

view, the more relevant question is whether the above-

noted features persist across multiple days. To answer

that question, variograms are produced for all 30 days.

The resulting individual variograms are not shown here,

because our main interest is in a comparison of two

variograms—based on a forecast and an observation.

Then, it is natural to examine the differences between

variograms. Figure 7 shows the differences between

variograms computed across the entire field: in black for

arw2 observation, red for arw4 observation, and green

for nmm4 observation.

Evidently, there is a great deal of variation in the

shape of these variograms. A perfect forecast field

would produce a curve overlapping the x axis. Given

that the underlying variograms are computed across the

entire field (including zero grid points), deviations from

the x axis reflect errors in texture as well as in size and

location. According to Fig. 7, however, the ideal situa-

tion does not arise for any of the curves for all 30 days.

In other words, none of the models produce variograms

that are consistent with observations across all 30 days.

On some days (e.g., 18 May 2005), all three curves are

relatively close to the horizontal line at 0, suggesting

that all three models produce high quality forecasts. On

other days (e.g., 10 May 2005), none of the models

produce a variogram comparable with the observed

variogram, on any scale. There exist days (e.g., 11 May

2005) when the agreement with observed variograms is

near perfect on small scales, but abysmal on larger

scales. Finally, although the models generally appear to

produce higher variograms than observed, there are a

few exceptions—most notably on 26 April on larger

scales, when all three models produce large negative

differences. For 28 May, on larger scales, arw2 and arw4

produce negative differences, but nmm4 produces pos-

itive differences. In general, for most of the 30 days,

arw2 and arw4 produce comparable variograms, and

nmm4 produces variograms larger than that observed.

This suggests that nmm4 may be producing either larger

objects, or generally higher reflectivity values, than

arw2 or arw4.

Again, such figures can be employed to examine the

forecasts for a given day. However, the box plots in
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Fig. 7 display the within-day variation of the differenced

variogram. For the purpose of comparing the three

models, it is more important to examine the between-

day variation of the differenced variograms. To that end,

we examine the distribution (across 30 days) of

the median of the differenced variograms, for a given

scale. Figure 8 shows a series of box plots summariz-

ing that distribution, each computed from 30 medians

FIG. 7. The differences between variograms: arw2-observation (black), arw4 observation (red), and nmm4 observation (green).
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(1 day21), versus distance.6 An ideal model would

produce a series of box plots with a significant overlap

with the dashed line at zero. In other words, the quantity

on the y axis measures forecast error. From top to

bottom, the three panels in Fig. 8 refer to arw2 obser-

vation, arw4-observation, and nmm4-observation. Ac-

cording to Fig. 8, all three models generally produce

higher variograms than observed. One explanation is

that the forecast extent of reflectivity exceeding 20 dBZ

is larger than that observed, for all three models; that is,

they produce more large spatially coherent features. On

smaller scales (,1700 km), the differences between the

model and observed variograms are not statistically

significant; however, at larger distances (.1400 km), the

differences are more significant, especially for nmm4.

The generally wider box plots for nmm4 also suggest

that it produces a wider range of forecasts with more

diverse errors. On the largest scales possible in this

study, namely the size of the field itself (;3500 km), all

three models agree with the observations, but that only

means that the three models produce forecasts whose

variances across the entire field are consistent with that

observed. This is not too surprising, given the 20-dBZ

threshold adopted in this study.

Figures 7 and 8 are based on variograms computed

across the entire field. The analog of Fig. 7 for variograms

computed across only nonzero grid points is not shown.

Figure 9 shows the error measure (analog of Fig. 8) when

variograms are computed across only nonzero grid points,

that is, measuring texture errors. Given that all the box

plots cover the x axis, all three models generally capture

the texture of the observed field. On other hand, based on

the fact that the median errors (middle line of the box

plots) are generally below the x axis, it follows that all

three models oversmooth the field. The exceptions are at

the largest scales, where arw4 and nmm4 appear to pro-

duce forecasts that are coarser than observed. However,

as mentioned previously, such conclusions regarding

large scales should be treated with caution.

6. Supplementary analysis

According to Fig. 8, the variogram of the forecast field

(computed across the entire field) is generally higher

FIG. 8. The variation in the differences between variograms between days: (top to bottom)

arw2 observation, arw4 observation, and nmm4 observation, respectively. The variograms are

computed across the entire field.

6 To be more specific, the between-day variation is computed as

follows: For a given value of the x axis (i.e., for a given scale), the

medians of the box plots across the panels in Fig. 7 are aggregated,

and their distribution is summarized as a box plot. It is these box

plots that are shown in Fig. 8.
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than that of the observed field. It is possible that this is

an artifact of the observed field, and not of the forecast.

What has been called the observed field is not truly ob-

served; it is a result of a number of analyses, all of which

affect the structure of the field. For example, reflectivity

data are generally noisy and are frequently smoothed

during analysis, thereby explaining the discrepancy with

the forecasts. However, the relative performance of the

three models (among themselves) remains unaffected

by any changes affecting the observed field. In other

words, the proposed methodology can still assess the

quality of a set of forecasts in a relative way, as well as

indicating differences between the forecast and ana-

lyzed data.

Another question concerns the higher variograms

associated with nmm4 as compared to arw2 and arw4.

For the case of 13 May 2005, that discrepancy was

explained above by examining the actual forecast and

observed fields and noting that the frontal occlusion on

that day is much larger, and more continuous, in the

forecast of nmm4, one which is much less pronounced in

the forecasts of arw2 and arw4, at least in terms of area

exceeding 20 dBZ. However, for a majority of the

30 days, nmm4 produces variograms (across the whole

field) that are higher than those of arw2 and arw4. As

noted in section 4, higher variograms can be produced

by larger objects. It is very likely that nmm4 produces

forecasts with larger (and more dense) precipitation

areas than arw2 or arw4.

To verify this, statistical tests are performed on three

simple summary measures: the percent of grid points

with reflectivity exceeding 20 dBZ (called coverage),

the mean of the reflectivity across all grid points in the

field (called mean reflectivity), and the mean of the

reflectivity over only the grid points whose reflectivity

exceeds 20 dBZ (called alternative mean reflectivity).

Figure 10 shows forecast versus observed scatterplots of

these three quantities for the three models. From the

top row in Fig. 10, the preponderance of points above

the diagonal line suggests that all three models produce

reflectivity exceeding 20 dBZ over a larger number of

grid points than is observed. However, it is also evident

that nmm4 produces more coverage than either arw2 or

arw4.

The second row in Fig. 10 shows that the three models

also produce higher levels of mean reflectivity than is

observed. Again, nmm4 produces higher levels of re-

flectivity across an entire forecast field than either arw2

or arw4, which may simply be due to its overforecasting

of the area of reflectivity.

The coverage and mean reflectivity are overestimated

by the three models, and so it is beneficial to examine the

forecasts in more detail. Examining the actual observa-

tions and model forecasts for the 30-day experiment

FIG. 9. As in Fig. 8 except that the variograms are computed only across nonzero grid points.
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(not shown), it is evident that all three models over-

forecast the extent of the nonzero reflectivity. When

examining the alternative mean reflectivity (bottom

panel in Fig. 10) where only points with nonzero re-

flectivity are included, one notes that, even though nmm4

has higher coverage than arw2 and arw4 (top-right panel

in Fig. 10) and higher mean reflectivity, the reflectivity

based only on these points is generally less biased than

those from arw2 and arw4. In short, all three models are

overforecasting the extent of the reflectivity.

To quantify these findings, a number of statistical

tests are performed. A paired two-sided t test performed

on the 30 forecasts’ coverage values and the corre-

sponding observed values yields p values ,0.001 for all

three models. A similar test performed on the mean

reflectivity results in similarly small p values. As such,

the evidence provided from the data suggests that the

models do not produce the observed coverage or mean

reflectivity across 30 days. In fact, the models generally

produce higher values of coverage and mean reflectivity

than is observed. A similar test performed on the al-

ternative mean reflectivity yields nonsignificant p values,

suggesting that the data are consistent with the models

in terms of their alternative mean reflectivity. All of

these conclusions are consistent with the panels shown

in Fig. 10. In addition, they suggest that the higher

variogram values produced by nmm4, as compared with

arw2 and arw4, are due to the higher coverage of the

FIG. 10. Scatterplots of (top) forecast vs observed percent coverage, (middle) mean reflectivity across the entire

field, and (bottom) mean reflectivity across only nonzero grid points. The three columns refer to (left) arw2, (middle)

arw4, and (right) nmm4.
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reflectivity produced by nmm4. This conclusion is

strengthened by the errors shown in Fig. 9, because they

preclude errors in the texture of the forecasts from be-

ing the culprit.

7. Conclusions and discussion

Forecast and observation fields are compared with

respect to their spatial structures, as summarized by

their variograms. Two types of variograms are com-

puted: one sensitive to texture, as well as size, shape,

and displacement errors, and the other sensitive only to

texture. The fact that the first type of variogram is

sensitive to the size and displacement error qualifies it

as an object-oriented verification measure. Similarly,

given the affinity between the second type of variogram

and the texture, it can be considered to be a spectral

method. Although these two variograms provide a

useful assessment of the forecast quality in terms of

smoothness, they complement other, more standard

measures such as accuracy.

A resampling framework is set up to assess the sam-

pling variation of the variogram, thereby allowing com-

parisons of different forecast models. The framework is

then employed to compare forecasts from three differ-

ent models with radar-based observations of reflectivity.

It is found that arw2 and arw4 produce highly similar

structures, both different from that observed; nmm4

creates a spatial structure that is least similar to that of

the observed field. More specifically, it is found that 1)

the three models (especially nmm4) overforecast the

spatial extent of features, as shown by the variograms

computed on zero and nonzero values (Fig. 8); 2) all

three models oversmooth the reflectivity field, as shown

by the variograms computed on the nonzero values

only (Fig. 9); and 3) additional analysis of more tradi-

tional measures confirms that the models generally

produce larger coverage areas and mean reflectivity

than is observed.

In addition to the questions addressed in the previous

section, there is another question that is almost hypo-

thetical, but worth asking. Many interpolation schemes

(e.g., kriging) involve fitting the variogram with some

theoretical model, first. The variogram model is then

employed to develop the interpolating model. As such, a

forecast field that has been smoothed in this way will

necessarily yield higher quality forecasts, in terms of

variograms, when compared with forecasts that have

been smoothed in some variogram-independent fashion.

Since the spatial structure is an important facet of fore-

cast quality, this suggests that one should incorporate

variograms into the analysis phase of NWP modeling, as

is proposed by Sxen (1997) and Greene et al. (2002).

The above analysis makes a few assumptions whose

removal points to future research. For example, it has

been assumed that the fields are isotropic. This is clearly

not true in the fields examined here, because the at-

mosphere is not isotropic. One way to remove this as-

sumption is to use directional variograms. It has also

been assumed that the variogram is constant across the

entire field. Although it is more difficult to assess the

validity of this assumption, it will be interesting to allow

for the variogram itself to vary as a function of region.

Of course, this complicates the verification task, but it is

entirely arguable that verification should be performed

in a region-dependent fashion anyway. After all, it is

possible, if not likely, that one model outperforms an-

other model in one specific region, but not in another,

such as more stratiform midlatitude systems or more

convective tropical systems. One other assumption is

that knowledge of performance assessed in terms of

variograms may aid a model developer in altering the

model for the purpose of improving its forecasts in

terms of variograms. To address this assumption, it will

be interesting to discover which model parameters af-

fect variograms. Finally, given that a variogram can be

computed for a sample of irregularly placed points, it is

possible to compute it for ‘‘raw’’ observations (prior to

analysis or interpolation), and compare it with the var-

iogram computed from gridded forecasts; in this way,

any concerns regarding undesirable smoothing of the

observations can be precluded. All of these issues are

currently under investigation.

Finally, one may wonder if for verification problems,

the variogram has utility only for high-resolution models.

The variogram assesses the spatial structure of a field on

all spatial scales, from the grid spacing to the size of the

field itself. The resolution of a model simply manifests

itself as a (lower) cutoff on the x axis of the variogram.

In other words, the variogram can be computed for all

length scales (i.e., at any resolution), but its values for

length scales nearing model resolution should be in-

terpreted with caution. In general, this methodology can

be used on forecasts from any model and allows for

assessing yet another facet of forecast quality.
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