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ABSTRACT

The distinction between forecast quality and economic value in a cost–loss formulation is well known. Also

well known is their complex relationship, even with some instances of a reversal between the two, where

higher quality is associated with lower economic value, and vice versa. It is reasonable to expect such

counterintuitive results when forecast quality and economic value—both, multifaceted quantities—are

summarized by single scalar measures. Diagrams are often used to display forecast quality in order to better

represent the multidimensional nature of forecast quality. Here, it is proposed that economic value be dis-

played as a region on a plot of hit rate versus false alarm rate. Such a display obviates any need to summarize

economic value by a scalar measure. The choice of the axes is motivated by the relative operating charac-

teristic (ROC) diagram, and, so, this manner of displaying economic value is useful for deterministic as well as

probabilistic forecasts.

1. Introduction

The general situation involving a binary event, and

binary or probabilistic forecasts of the event, is thor-

oughly studied (Jolliffe and Stephenson 2003; Murphy

1991, 1993; Wilks 2006). The quality of such forecasts is

a multifaceted quantity (Murphy and Winkler 1987,

1992), and, therefore, information regarding forecast

quality is lost when it is summarized by a single, scalar

measure. For example, the probability of detection (or

hit rate) and the false alarm rate individually provide an

incomplete assessment of forecast quality. A high hit

rate (suggesting high quality) may be accompanied by

a high false alarm rate (suggesting low quality), or vice

versa. Focusing on any single measure can lead to a

completely false assessment of the true quality of fore-

casts, at worse, and, at best, it can lead to measures with

undesirable properties under certain circumstances

(Marzban 1998).

The multifaceted nature of forecast quality calls for

a paradigm where diagrams take the place of a single

measure of quality. For probabilistic forecasts, attribute

diagrams, refinement diagrams, discrimination plots, and

relative operating characteristic (ROC) curves are used

to display different facets of forecast quality. For cate-

gorical (deterministic) forecasts, a recent proposal in-

cludes the performance diagram (Roebber 2009; Taylor

2001), where multiple scalar measures are plotted on

a single diagram. Although there are differences be-

tween these diagrams, what is common to them is that

they acknowledge the importance of displaying fore-

cast quality in a multidimensional fashion (i.e., via a

diagram).

Another well-studied problem involves the situation

when a binary decision or action is to be based on

forecasts (Doswell and Brooks 1998; Katz and Murphy

1997; Mason 2004; Richardson 2000; Wandishin and

Brooks 2002; Wilks 2001, 2006). The concept that arises

from considering such problems is the economic value of

the forecasts. The economic value and the quality of

forecasts are different facets of forecast goodness, often

with a complex relationship between them (Murphy and

Ehrendorfer 1987; Roebber and Bosart 1996).

Assessing economic value (henceforth value) requires

a specification of the costs and losses incurred in taking,

or not taking, an action based on the forecasts. However,

not all decision problems lend themselves to a cost–loss

analysis. For example, Stewart et al. (2004) discuss the

value of precipitation forecasts with respect to snow

removal. They show that the decision-making process in

that problem is too complicated for a simple cost–loss

analysis. And even when the problem is simplified, they

find that the unavailability of appropriate data can
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preclude a proper assessment of value. In the following,

it is assumed that the decision process does allow for

a cost–loss analysis.

The importance of examining the value of forecasts

has been highlighted in a wide range of practical prob-

lems. Palmer (2002) compares three different pre-

cipitation forecasting systems and shows that ensemble

systems have higher value than deterministic forecasts.

Within the context of terminal aerodrome forecasts

(TAFs), Keith (2003) has shown that airlines can benefit,

through lower fuel usage, when the value of TAFs is

taken into account. He shows that for some flights, even

moderate quality forecasts can provide most of the

economic savings gained by perfectly reliable TAFs.

Keith and Leyton (2007) show that the value of proba-

bilistic forecasts at airports can be used to determine the

optimal amount of fuel to be carried by an airplane. The

value of hurricane forecasts is taken into account by

Letson et al. (2007) when they compare the benefits

from multiple actions, for example, ‘‘improved forecast

provision and dissemination vs. alternative public in-

vestments such as infrastructure or forecasts of other

hazards.’’ The value of wind forecasts has been exam-

ined for utility industries (Milligan et al. 1995), and

Teisberg et al. (2005) have analyzed the value of tem-

perature forecasts in electricity generation. All of these

studies demonstrate the usefulness of examining the

value of forecasts in conjunction with their quality.

In its simplest realization, value, like quality, is sum-

marized by a single measure, which is plotted as a func-

tion of a quantity depending on the costs and losses.

Also like quality, value is a multifaceted notion, and so

information is lost when it is summarized by a single

measure. Thus, neglecting the multidimensional nature

of value can lead to false conclusions. At worse, it can

lead one to believe that forecasts have high value, when

in fact, they do not. Or, the forecasts may be declared to

have little value, when in reality they have high value.

Neglecting the multifaceted nature of value can also

lead to counterintuitive or apparently contradicting

conclusions. Indeed, a reversal of quality and value has

been noted in the literature, where higher quality is as-

sociated with lower value, or vice versa (Murphy and

Ehrendorfer 1987). This type of counterintuitive result

can be explained by a number of arguments, including

one proposed byMason (2004) where the culprit behind

the unexpected result is attributed to a nonoptimal

probability threshold. For deterministic forecasts, an

alternative explanation is that the aforementioned re-

versal occurs because multifaceted quantities (i.e.,

quality and value) are summarized by single, scalar

measures. Avoiding a scalar measure of value not only

precludes such counterintuitive conclusions but also

provides a more complete, and therefore more useful,

representation of the value of forecasts.

In this paper it is proposed that the value of binary

(deterministic) forecasts be displayed as a region on

a plot of the hit rate versus the false alarm rate, without

the need for a scalar summary measure for value at all.

Such a plot is of course the ‘‘background’’ upon which

the ROC curve is drawn, and, so, the proposed method

of displaying value is useful for probabilistic and de-

terministic forecasts alike.

2. Forecast quality and economic value

Denote the occurrence or nonoccurrence of an event

with a 1 or 0, respectively, and similarly, for taking an

action (1), or not taking an action (0). Let H and F rep-

resent the hit rate and the false alarm rate, respectively.A

commonly used (scalar) measure of forecast quality,

specifically of discrimination, is the true skill score (TSS),

also known by many other names (Wilks 2006):

TSS5H2F . (1)

In the cost–loss formulation, an often-used toy model

for the lossmatrix is (Berger 1985; Katz andMurphy 1997)

Action

0 1

Event
0

1

�
0 C

L Lm

�
. (2)

In this model, if an event does not occur, and no action

is taken (action5 0), then no cost or loss is incurred. If

an event does not occur, but action is taken (action5 1),

then a cost C is incurred. If an event does occur, and no

action is taken, then the user loses an amount L. Fi-

nally, if an event occurs, and an action is taken, then

a loss of Lm is incurred. Note that the choice of the loss

matrix is completely independent of forecasts or their

quality.

The following quantities are central to ascertaining

the value of forecasts (Katz and Murphy 1997; Wilks

2006):

E05[Expected cost if Action50]5pL ,

E15[Expected cost if Action51]5(12p)C1pLm ,

Ef 5[Expected cost if Action5forecast]

5(12p)FC1p(12H)L1pHLm ,

Ep5[Expected cost if Action5perfect forecasts]5pLm ,

Er5[Expected cost if Action5random forecasts]

5(12p)F1C1pF0L1pF1Lm , (3)
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where p is the prior (climatological) probability of the

occurrence of an event, and F0 and F1 are the pro-

portions of forecasts of ‘‘0’’ and ‘‘1’’, respectively. In the

absence of forecasts, it is self-evident that an action

should be taken if it leads to a lower expected cost.

Defining the ratio1

Cl5
C

C1L2Lm

, (4)

then the first two equations in Eq. (3) imply

Take action if p.Cl; otherwise, do not act . (5)

In other words, from an economic point of view, and

without any forecasts, it is beneficial to always take ac-

tion if the probability of an event exceeds the ratio of

cost and loss appearing in Cl.2

A popular scalar measure of forecast value is

(Richardson 2000; Wilks 2001)

V5
Expected savings from forecasts

Expected savings from perfect forecasts
5

min(E0,E1)2Ef

min(E0,E1)2Ep

,

5

min

�
p,
C

L
2 p

�
C2Lm

L

��
2 p2 (12 p)(F)

C

L
1p(H)

�
12

Lm

L

�

min

�
p,
C

L
2 p

�
C2Lm

L

��
2 p

Lm

L

. (6)

Although this is normally the way V is written, it simplifies

considerablywhenwritten forp,Cl andp.Cl separately:

V5

8><
>:

H2RF if p,Cl (i. e. , R. 1)

(12F)2
1

R
(12H) if p.Cl (i. e. , R, 1)

,

(7)

where the quantity R is defined as3

R5

�
12 p

p

��
Cl

12Cl

�
. (8)

Note that

p,Cl5R. 1 and p.Cl5R, 1. (9)

If p 5 Cl (i.e., R 5 1), then V 5 H 2 F 5 TSS. In other

words, if p5Cl, thenV (i.e., a measure of value) reduces

to a measure of quality.

3. Reversal of quality and value

The above presentation allows for a simple demon-

stration of the aforementioned reversal phenome-

non noted in the literature (Mason 2004; Murphy and

Ehrendorfer 1987). Both TSS andV depend onH and F,

and so are best displayed on a plot of H versus F. This

choice of the variables across the x and y axes is the same

as that of the ROC diagram (Fawcett 2006; Marzban

2004). On a plot ofH versus F, both TSS5 constant and

V 5 constant are straight lines. F F1igure 1 shows the

(solid) lines TSS5 0.3, TSS5 0.4, and the (dashed) lines

V 5 0.1, V 5 0.2. The former have slope 1, while the

slope of the latter is R 5 1.6.4 Consider two forecasting

systems corresponding to the filled and open circles in

Fig. 1. One has higher quality (TSS) than the other but

lower value (V). This type of reversal may seem con-

cocted, but it is actually quite natural and is dictated by

the geometry of two parallel lines intersecting another

pair of parallel lines. Note that if p 5 Cl (i.e., R 5 1),

then all lines have slope 5 1, and so no intersection

between the lines can occur. In other words, this type of

reversal occurs when p 6¼ Cl.

4. Value region

Such a reversal of quality and value arises because

they are summarized by single, scalar measures. The

1 Richardson (2000) denotes this quantity a.
2 If Cl . 1, then no action should be taken, independently of p,

because the expected cost associated with no action is always lower

than that associated with action. But if 0,Cl, 1, then the optimal

decision depends on the value of p. For this reason, only 0,Cl, 1

is examined here.
3 If both p andCl are very small (i.e., p� 1 andCl� 1), thenR;

Cl/p. WithLm5L, Cl becomesC/L. Some reportedC/L ranges are

as follows: for orchardists, 0.02–0.05 (Murphy 1977); loading of fuel

for airplanes, 0.01–0.12 (Leigh 1995); and winter road gritting,

0.125 (Thornes and Stephenson 2001).

4 For small p and Cl, an R of 1.6 corresponds to p/Cl 5 1/R 5
0.625.
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reason is that by virtue of being a scalar quantity,V does

not fully capture the multiple facets of value. But one

can convey a more complete representation of value by

returning to the expected costs in Eq. (3), from which V

is constructed. For example, it is reasonable to define

valuable forecasts as those satisfying

Ep ,Ef ,E0, E1, and Er . (10)

In other words, the expected cost from using forecasts

ought to be greater than that from perfect forecasts, but

lower than either E0, E1, and the cost associated with

acting according to random forecasts. Here, Eq. (10)

defines economically valuable forecasts.5

In light of the expected costs in Eq. (3), the in-

equalities in Eq. (10) become

Lm ,L,
H

F
.R,

12H

12F
,R, H.F . (11)

The left-most constraint is trivial in that it is satisfied on

physical grounds. It is easy to show that the right-most

constraint is implied by the middle two constraints,

which together place a severe restriction on possible

values of H, F, and R. These two constraints can be

written as

H.RF, H. (12R)1RF , (12)

and their linearity in H and F again allows for a simple

representation on a diagram of H versus F. For a given

p/Cl, only one of these constraints is nontrivial, de-

pending on p , Cl (i.e., R . 1) or p . Cl, (i.e., R , 1),

respectively. Therefore, the region corresponding to

valuable forecasts—termed ‘‘value region’’—is a tri-

angular region bounded below by the lines H 5 RF or

H5 (12R)1RF. Tomake a connection with the scalar

measure of value, these lines correspond to V 5 0, de-

pending on whether p , Cl or p . Cl. The connection

between the value region and V 5 constant lines is en-

tirely expected. The important point, however, is that

value can be displayed without a scalar measure.

For a givenH and F, it is possible to solve Eq. (12) for

the critical value of R separating forecasts with value

from those without value. The R values corresponding

to valuable forecasts are

12H

12F
,R,

H

F
. (13)

These constraints on R can be translated into constraints

on Cl, by virtue of Eq. (8). Forecasts with valuemust have

1

11

�
12p

p

��
12F

12H

�,Cl,
1

11

�
12 p

p

��
F

H

� . (14)

Again, in order to make a connection with the scalar

measure of value, V, the interval specified in Eq. (14) is

where V is nonnegative. It is worth pointing out that

Richardson (2000) shows that the quantities appearing

in Eq. (14) are the conditional probability of the oc-

currence of an event, given a forecast of ‘‘yes’’ or ‘‘no,’’

respectively. The particular form in Eq. (14) (not written

in terms of these conditional probabilities) is intended to

distinguish F and H, which assess forecast quality, from

p, which is determined by climatology.

The value region for different values of p and Cl is

shaded in gray in F F2ig. 2. The specific values of p and Cl

selected here are 0.001, 0.008, 0.018, 0.279, and 0.99

(motivated by the ‘‘Finley data,’’ described in the next

paragraph.) Only forecasts whose hit rate and false

alarm rate fall in the shaded region are economically

valuable. Also, note that the extent of the value region is

FIG. 1. A demonstration of the reversal of quality and value. The

solid parallel lines correspond to TSS 5 0.3 and 0.4, and the two

dashed lines represent forecasts withV5 0.1 and 0.2. The forecasts

corresponding to the filled circle have higher quality, but lower

value than the forecasts associated with the open circle.

5 The less than sign in Eq. (10) may be changed to less than or

equal to but not much is gained from that revision.
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FIG. 2. The value region (shaded) for different values of p and Cl. The filled circle corresponds to the Finley dataset. The arched curve is

an example of an ROC curve based on a binormal model whose parameters have been chosen so that the ROC curve goes through the

Finley point.
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maximum when p and Cl are comparable. For situations

when they differ significantly, the value region is rela-

tively small. This is a reflection of the fact that taking

action, and not taking action, are the optimal decisions

when p � Cl and p � Cl, respectively.

As a concrete example, consider the Finley data

(Murphy 1996) whose contingency table is shown in

TT1 able 1. One hasH5 0.549, F5 0.026, TSS5 0.523, and

p5 0.018. The filled circle in the p5 0.018 panels in Fig.

2 corresponds to this data. The manner in which it falls

inside, on the boundary, or outside the value region,

depending on Cl, is evident. Indeed, according to Eqs.

(13) and (14), Finley forecasts have value only if 0.463,
R , 21.11 or 0.0084 , Cl , 0.279. For users whose Cl

falls outside of this range, the forecasts have no value at

all, regardless of their quality. As such, the user should

ignore the forecasts and simply either act, or not act,

according to the prescription in Eq. (5). Again, note that

no scalar measure of value has been summoned in this

representation of value.

This display of value is useful even when forecasts

are probabilistic, or of a type for which ROC curves

can be generated. The panels in Fig. 2 also show an

ROC curve based on a binormal model (Marzban

2004) going through the ‘‘Finley point.’’6 It does not

correspond to any ‘‘real’’ probabilistic forecasts of

tornados. Its purpose is only to demonstrate the in-

terplay between the ROC curve and the value region.

For example, if p 6¼ Cl (i.e., away from the diagonal

panels in Fig. 2), then the ROC curve has segments

that do not fall in the value region. In other words,

even though the underlying probabilistic forecasts

clearly have high quality, reflected in the high arc of

the ROC curve, or the large area under it, for some

probability thresholds the resulting binary forecasts

have no value. This is consistent with the arguments of

Mason (2004) for being careful in selecting optimal

thresholds when value is summarized by V.

5. Uncertainty

The value region is bounded below by a straight line

whose slope and intercept are determined byR only; see

Eq. (12). As such, the only source of uncertainty with

respect to the extent of the value region isR itself. Given

that R is determined by p and Cl, the uncertainty in R,

denoted dR, can be computed from uncertainty in the

latter, denoted dp, and dCl, respectively. It is reasonable

to assume that uncertainty in p is independent of un-

certainty in Cl, because the former is estimated from

data, while the latter depends on the specifics of a user. If

this assumption is valid, then Eq. (8) implies

�
dR

R

�2
5

1

(12 p)2

�
dp

p

�2
1

1

(12Cl)2

�
dCl

Cl

�2
. (15)

This equation allows one to compute the uncertainty in

R from uncertainties in p and Cl. To simplify further,

one may assume that events and nonevents occur inde-

pendently (a poor assumption), in which case (dp)2 can

be measured by the variance of p, that is, p(12 p)/N,

where N is the total number of events and nonevents

in the sample. Under this assumption, the first term in

Eq. (15) is inversely proportion to N, and so it will be

negligible relative to the second term, for a sufficiently

large sample size. In that case, Eq. (15) simplifies to

dR/R5 [1/(12Cl)](dCl/Cl). So, for a sufficiently large

sample, this simple formula can readily compute the un-

certainty in R from the uncertainty in Cl itself.

The visual effect of uncertainty is to broaden the

lower boundary line of the value region into a triangular

region. This is shown in F F3ig. 3, when p , Cl (left panel)

and p. Cl (right panel). In these figures, and for purely

visual purposes, the specific uncertainty in p is 60.5.

Also shown in these figures, only as a point of reference,

is the Finley point along with its uncertainty in both the x

and y directions. Given thatHR and FR are proportions,

and assuming independence of daily tornadic activity

(again, a poor assumption), their uncertainty is propor-

tional to the standard deviation of a proportion, based

on a sample of size n (i.e.,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p(12p)/n

p
). The ‘‘cross’’

atop the Finley point in Fig. 3 is 62 times this standard

deviation. The horizontal segment of the cross is much

smaller than the vertical segment, because, as evidenced

in the Finley dataset (Table 1), the sample size from

which FR is computed (i.e., 2680 1 72) is much larger

than that upon which HR is based (23 1 28). Still, these

figures illustrate how uncertainty plays into the value

region: the HR and FR (as well as their uncertainty) of

forecasts will generally be represented by a cross, while

the uncertainty in p and Cl will lead to a broadening of

the lower boundary of the value region. If a significant

portion of the cross falls within the boundary region’s

‘‘significant portion,’’ then one may conclude that the

value attributed to the forecasts is unlikely to be due to

TABLE 1. The Finley dataset.

No tornado forecast Tornado forecast

No tornado observed 2680 72

Tornado observed 23 28

6 The means of the two normal distributions are 21.035 and

11.035, and both standard deviations are 1.
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chance. Given that these displays are intended to provide

information in a visual manner, and more information

than that provided by a single number, it is unnecessary

to quantify that (un)likelihood by a statistical test. In the

cases displayed in Fig. 3, for example, one would be

justified in concluding that the value is not due to chance.

On the other hand, if a significant portion of the cross falls

outside of the value region, then one can only conclude

that the data do not provide sufficient information in

support of any claim regarding the population/true value

of economic value.

6. Summary and discussion

It is proposed that the (economic) value associated

with a set of forecasts not be measured by a scalar

quantity. It is argued that forecasts can be said to have

value if the expected cost associated with actions linked

to forecast satisfies some very general and reasonable

inequalities. For example, actions linked to valuable

forecasts ought to have a lower expected cost than ac-

tions based on random forecasts, or actions not based on

forecasts at all. The inequalities define a value region,

which is most naturally displayed in a diagram of the hit

rate versus the false alarm rate (i.e., the ‘‘background’’

upon which the ROC curve is drawn). As such, quality

and value can be displayed in a single diagram, without

a summary measure for either. If a point on the ROC

diagram falls within the value region, then the deter-

ministic forecasting system can be said to have value. A

consequence of using the value region is that one can no

longer rank different forecasting systems, because rank-

ing requires a scalar measure; all systems within the value

region must be treated as equal in terms of their value.

In this sense, the value region treats the value of fore-

casts as a binary quantity; forecasts either have value, or

they do not. For probabilistic forecasts, or other fore-

casts for which an ROC curve can be produced, the por-

tion of the ROC curve that falls within the value region is

said to have value. In this way, some probability thresh-

olds lead to valuable forecasts, and some do not. In ad-

dition to offering a more complete picture of value, use of

the value region (as opposed to a scalar measure) also

precludes counterintuitive conclusions such as the re-

versal of the relationship between quality and value. The

value region is defined essentially by the equation of a

straight line and is, therefore, extremely easy to compute

without any sophisticated computer code. The formulas

for computing the uncertainty in the value region are also

simple to implement.

The connection between the value region and the

scalar measure V is simple: The former corresponds to

all points on the ROC diagram for which the latter is

nonnegative. This connection is not surprising because

both concepts are based on the same set of expected

costs. However, the value region carries more informa-

tion by virtue of being a two-dimensional quantity. And

displaying it on an ROC diagram, in particular, makes it

especially useful given the ubiquity of ROC diagrams.

In addition to the works mentioned in the introduc-

tion, the connection between the ROC curve and expec-

ted cost has also been examined in fields outside of

meteorology; two of these works are worth discussing

here because of their close connection to the notion of

the value region. Provost and Fawcett (1997) consider

the slope of an ‘‘iso-performance line,’’ which is the locus

FIG. 3. The effect of uncertainty on the value region, when (left) p,Cl and (right) p.Cl. The ‘‘cross’’ on the left side

of the graph shows the Finley point and its uncertainty.
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of points on an ROC diagram with equal expected cost

Ef. Although they examine the situation where Lm 5 0,

it is easy to show that the slope of their iso-performance

line is exactly the slope of the constant value line, with

value defined by V in Eq. (7).

Drummond and Holte (2006) begin with the connec-

tion between cost (or loss) and the slope of a line on the

ROCdiagram but argue that the comparison of different

forecasting systems is hampered by the visual effort to

compare slopes of lines (e.g., tangent to theROC curve).

Instead, they consider an alternative diagram involving

what they call ‘‘cost curves,’’ defined as straight lines

in ‘‘cost space,’’ that is, a plot of expected cost versus

pL/[pL1 (12 p)C].7 ROC space and cost space are de-

scribed as having a ‘‘dual’’ relationship in that the in-

tercept and slope of a cost curve are determined by the

coordinates of a point on the ROC diagram; similarly,

a line on the ROC diagram translates to a point in cost

space. The main advantage of cost curves over ROC

curves is that the former make it easier to compare two

different forecasting systems in terms of the expected

cost associated with the forecasts. Another advantage

is that confidence intervals for cost curves can be more

easily displayed. The notion of a cost curve has many

similarities to the notion of a value region proposed

here, but there are some important differences. For ex-

ample, the value region is displayed on an ROC diagram.

In spite of all the advantages of cost curves over ROC

curves, the latter are still useful and commonly employed.

As such, displaying the value region adds useful infor-

mation to the ROC diagram. Also, whereas cost curves

are conducive to the comparison of two forecasting sys-

tems, the value region is useful even when examining

a single forecasting system, that is, a single point on the

ROC diagram (e.g., for deterministic forecasts) or a sin-

gle ROC curve (e.g., for probabilistic forecasts).
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