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Abstract

There exist radar-based algorithms designed to detect circulations in the at-
mosphere. Not all detected circulations, however, are associated with tornados
on the ground. Outlined herein, is the development of a multi-layered perceptron
designed to classify the two types of circulations - nontornadic and tornadic -
based on various attributes of the circulations. Special emphasis is placed on the
role of local minima in determining the optimal architecture via bootstrapping,
and on the performance of the network in terms of probabilistic measures.

1 Introduction

A great deal of effort is required to determine the optimal architecture of a Multi-
layered Perceptron (MLP) designed to perform a specific task. That issue is important
to consider because the nonlinearities inherent in a MLP can allow it to overfit data,

leading to poor generalization.

The nonlinearity of a MLP is determined primarily by two quantities - the number
of hidden nodes, and the magnitude of the weights. This can be seen as follows: If the
magnitude of the weights is restricted to be “small” (relative to some scale), then most

activation functions (e.g. logistic, tanh, etc.) are linear in the range of allowed weights.
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As a result, regardless of the number of hidden units, the MLP will represent nothing
more than linear regression or a linear classifier. On the other hand, if the weights are
allowed to take “large” values, then most activation functions become highly nonlinear,
and consequently, even a small number of hidden nodes can render the MLP highly
nonlinear. Such nonlinearities may allow the MLP to fit features in the data that are
driven by noise or statistical fluctuations. As such, an MLP can overfit the (training)

data by exhibiting superb performance on it, but have no generalization capability.

From a statistical point of view, the problem of the optimal architecture is one of

Y

“model selection,” and a variety of methods exist for that purpose. Certain proposals
have been made that even avoid the entire issue of the optimal architecture (Buntine
and Weigend, 1991; MacKay, 1996; Neal 1996), and one of these was examined in a
meteorological context in (Marzban, 1998). However, it turns out that in these methods
the question of optimal architecture is replaced by the difficult task of evaluating the
distribution of certain (hyper) parameters. Although such methods are most likely the
most promising methods for model selection, their implementation is quite involved
and technically demanding. Simpler alternatives include prunning techniques (Mao,
Mohiuddin, and Jain 1994; Hassibi and Stork 1993; Le Cun, Denker, and Henderson
1990) wherein one begins with a large network and systematically removes some of the
less important weights. These methods make certain restrictive approximations, such
as diagonal hessian, quadratic error functions, and measures of weight importance,
that must be handled with care. The simplest approach which also avoids all such
difficulties, if the problem is not too computationally expensive (e.g., if the number
of weights is not prohibitively large), is the brute force approach of training MLPs
with 0,1,2,...H hidden nodes (one one layer) and selecting the one that meets the
performance criterion. The MLP for tornado prediction as considered in this article is

sufficiently small for this brute force method to be viable.

Many of these approaches to model selection involve re-sampling of data. A well-
known and relatively simple example is bootstrapping (Efron and Tibshirani 1993). In

its simplest form, one repeatedly trains a MLLP with subsamples of the data - called the



training sets. The architecture with the lowest average on the remaining (validation)
sets is asserted to be the optimal architecture. Of course, the performance of the
resulting MLP on both the training and the validation sets is an optimistically biased
estimate of generalization performance, and for this reason, yet another data set - a

test set - is required for estimating the generalization performance of the MLP.

An implicit assumption in all re-sampling-based procedures is that in each re-
sampling trial the MLP converges to a global minimum, or at least to a “deep” local
minimum. Although there exist a variety of techniques for finding deeper, and deeper,
local minima, it is impossible to prove that the deepest minimum found is in fact a
global minimum; in practice, given sufficient time, a training algorithm can usually
find a deeper minimum. As such, in the context of model selection, there are (at least)
two sources of variability - one due to finite sampling at each trial, and one due to
local minima. Therefore, it is important to examine model selection with particular

attention paid to both.

An arena in which neural networks have had significant success in improving pre-
dictions is that of tornado prediction (Marzban and Stumpf 1996, 1998a,b; Marzban,
Paik, and Stumpf 1997). Part of the success is due to MLPs’ ability to represent
nonlinear relations; however, a large portion of the success is due the development
of better means for identifying circulations in the atmosphere (Stumpf et al. 1998,
Mitchell et al. 1998). In particular, Doppler radar provides the ability to identify such
circulations, because it can identify regions of the atmosphere that move towards or
away from the radar. Indeed, it is possible to identify adjacent regions with opposing
movements satisfying certain conditions that in essence define a circulation. Figure 1
shows an instance from May 3, 1999, over Oklahoma City, Oklahoma, U.S.A., during
which two such circulations were detected. However, not all circulations satisfy the

necessary atmospheric conditions to form tornados.

The aim of this article is to outline the development of a MLP that assesses the

probability that a given circulation may be tornadic. The outline places special em-
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Figure 1: An example of the output of a circulation detection algorithm, with two
detected circulations shown as circles. Different shades of gray correspond to different
directions of air movement as measured by Doppler radar.



phasis on the effect of local minima in determining the optimal number of hidden nodes
via re-sampling methods, in particular, bootstrapping. The MLP produces posterior
probabilities, and so, its performance is assessed in terms of a number of categorical

and probabilistic measures.

2 Data

The National Severe Storms Laboratory has developed two algorithms for detecting
circulations in the atmosphere based on information constructed from Doppler radar
(Stumpf et al. 1998, Mitchell et al. 1998). Another information that is also available is
the existence/nonexistence of actual tornados on the ground, at a given point in space
and time. This situation is suitable for the development of a MLP as a statistical model
of the relationship between the various attributes of a detected circulation and the ex-
istence of tornados. The two algorithms differ in many respects, the most important
of which is that one is designed for detecting larger, storm-scale, circulations (Stumpf
et al. 1998), while the other is designed to detect smaller, but more-intense circula-
tions (Mitchell et al. 1998); the physics underlying the two circulations is believed
to be different. A set of MLPs have already been developed for the former (Marzban
and Stumpf 1996, 1998a,b; Marzban, Paik, and Stumpf 1997). In this article, the

development of a MLP for the diagnosis of tornados in the latter algorithm is outlined.

A number of statistical properties of the circulation attributes have been presented
in (Marzban, Mitchell, Stumpf 1999). Here, we mention that the class-conditional
frequency distributions are all highly nongaussian, and non-homoelastic (i.e., the class-
conditional variances are unequal), rendering the problem suitable for a MLP. The 21
attributes and a brief description of each are as follows: 1) The height of the lowest
point of a circulation; 2) The vertical extension of a circulation; 3) Low-level gate-

to-gate velocity difference !; 4) maximum gate-to-gate velocity difference; 5) height

LGate-to-gate refers to the difference in radar velocity bins which are azimuthally adjacent and
constant in range.



of maximum gate-to-gate velocity difference; 6) low-level shear; 7) maximum shear;
8) height of maximum shear; 9) altitude weighted, vertically integrated low-altitude
gate-to-gate velocity difference; 10-18) the corresponding time-trends; 19) convective
available potential energy; 20) storm-relative environmental helicity; and 21) range
from the radar. Although the range itself is not expected to be a predictor, it is
expected to affect the values of the other attributes. For further details see (Mitchell,
et al. 1998).

The data set examined contains 29 days of storm activity which constitutes Ny =
5348 nontornadic and N; = 512 tornadic circulations. Whether or not a circulation
is labeled as tornadic (or not) is based on ground-based observations. As this project
neared completion, an independent data set containing 6 additional days of storm
activity (943 circulations) became available, allowing for an unbiased estimation of the

MLP’s performance.

Some pre-processing of the data is necessary prior to the MLP development. All 21
attributes are transformed into z-scores (i.e., mean of zero and a standard deviation of
1). Outliers for a given attribute are identified, and then removed, by a visual exam-
ination of the estimated class-conditional frequency distributions. The preprocessing
leaves 5791 circulations which are randomly divided into 4344 cases (about 2/3) for
training and 1447 cases for validation. A similar preprocessing of the test set leads
to 941 circulations. A number of other linear transformations of the inputs were also
examined - principal components analysis, and “whitening” (Bishop 1996); however,
the performance of these MLPs was not found to be significantly different from the one

with only z-transformed inputs.

3 The Method

The input nodes, numbering 21, were the various attributes mentioned above. Al-

though, collinearity among the inputs is not a serious detriment to the performance of



MLPs designed only for prediction/detection (in contrast to an MLP designed for rule
extraction), the highly collinear inputs (numbering 2 pairs) were initially excluded from
the MLP. However, it was found that the performance of the MLPs with the collinear
inputs included was statistically equivalent to that of the MLP with no collinear inputs.
For this reason (and to be conservative) all 21 attributes were eventually employed as

inputs.

The output nodes actually numbered 2 - one for tornado (target 0 or 1), and the
other for damaging wind (target 0 or 1). A single output node corresponding to the for-
mer would have sufficed for tornado prediction; however, it has been conjectured that
the existence of a second output node representing a quantity that is closely related to
the first output node may actually aid the MLP in surmising the true underlying rela-
tions (Mitchell 1996). No attempt was made to substantiate this conjecture; however,
the second output node was included since its presence is not expected to adversely

affect the performance of the MLP in predicting tornados.

The error function being minimized during training was cross-entropy

S=—-—— t!log =~ 4+ (1 —¢])1 ¢ 1

where ¢ are the target values, and y! are the outputs for the i case and the j*
output node. It has been shown (Richard and Lippmann 1991) that the minimization
of this error function allows for the interpretation of the output nodes as posterior
probabilities, if the activation function of all the layers is the logistic function f(z) =
1/[1 + exp(—=z)], and if the output nodes are coded as 0 or 1 for the two classes.
Consequently, the first (second) output node of the present MLP is the probability of

tornado (damaging wind), given the values of the 21 inputs.

A sequence of networks with H = 0,2,4,8, and 16, hidden nodes (on one layer)
were trained and validated on 4 subsamples of the data. The training algorithm was the
conjugate gradient method. When a local minimum was reached, simulated annealing

was employed to attempt an escape. If a better minimum was found, then conjugate



gradient was employed again, otherwise the entire training phase resumed from a new
random set of initial weights. This procedure is due to Masters (1993). The total
number of times that this complete reinitialization was allowed was 43, and so 43 local
minima were visited. The one with the lowest value of cross-entropy over the training
set can be considered to be the “global” minimum within the set of local minima
visited. Of course, there is no guarantee that the deepest local minimum is anywhere
as deep as any global minimum. However, a global minimum is not even necessary for

a well-performing MLP; a sufficiently deep minimum will usually suffice.

To get a grasp on “sufficiently deep,” it is instructive to examine the frequency
distribution of all the local minima visited. For example if the frequency distribution
of the local minima (i.e., that of the training errors) is generally bell-shaped, then the
“width” of the distribution sets a scale for the range of possible minima; for a given
training algorithm, error values far beyond the extreme ends of the distribution will be
rare, and difficult to reach. So, if the true global minimum exists somewhere beyond
these extreme regions, then that training algorithm will most likely not find it. In
other words, from a practical point of view, any of the minima in the lower-end of the
distribution can be considered as a “global” minimum (given the data and the training

algorithm).

Furthermore, the frequency distribution of the local minima can make evident the
difference between the deepest local minimum and the most visited local minimum
(i.e., the mode of the distribution). For example, if the distribution is highly peaked
and narrow, then even though the most-visited local minimum is a strong attractor,
the small difference between its error function and that of the deepest minimum makes
it less important to find deeper minima. On the other hand, if the distribution is
relatively flat, with a wide range, then it is important to assure that a MLP occupies

the deepest possible local minimum.

The frequency distribution of the errors at the local minima can serve one other

function. Recall that although a “local minimum” refers to the value of the error func-



tion evaluated over the training set. Given the weights of the MLP at a local minimum,
one can also compute the error function over the validation set. As such, every local
minimum is associated with two values of the error function - of the training set, and
of the validation set. Tracking the movement and the width of these distributions (as
compared to tracking just a local minimum), as a function of the number of hidden
nodes (H), offers a “safer” way of arriving at the optimal number of hidden nodes, H..
This can be seen as follows. As H increases, the distribution of the training errors will
generally shift to lower values; while that of the validation errors will initially shift to
lower values, at H, it will begin to shift to higher values, indicating that the training

set is being overfit.

Finally, the correlation between the points in the two distributions can also an-
ticipate overfitting. As will be shown below, for H < H,, lower training errors are
generally associated with lower validation errors at the local minima. On the other
hand, for H > H,, the correlation between the two errors reverses direction. Therefore,
by monitoring the correlation between the training and the validation errors over the
local minima, one can decide on “how far” H is from H,.. All of this can be made
self-evident in a scatter-plot of the training and validation errors over the local minima

(a diagram which we shall refer to as a “tv-diagram.”)

4 Performance

There are at least two facets of performance that must be distinguished. An MLP can
be treated as a classifier in which case its performance is best expressed in terms of
a contingency table (i.e., confusion matrix), and scalar measures derived therefrom.
This is the manner in which most MLPs are treated. On the other hand, it is possible
to treat an MLP as a device for modeling posterior probability (Richard and Lippman
1991). A concise reference to probabilistic forecasting is (Dawid 1986), but a great
deal of the subject developed in its meteorological guise is due to Murphy and Winkler

(1987, 1992). In the meteorological arena preference is given to probabilistic forecasts,



and the problem of tornado prediction is no exception, but both facets of performance

will be considered below.

To form a contingency table, one must reduce probabilities into a dichotomous
quantity by introducing a threshold on the probabilities; any probability higher (lower)
than this threshold would be classified as a tornado (non-tornado). The 4 elements of
the 2 x 2 table are C; (Cy), the number of correctly classified nontornados (tornados),
and Cy (C3), the number of incorrectly classified nontornados (tornados). Although
the table has 4 elements, there are only two degree of freedom if the class-conditional
sample sizes are fixed, because Ny = C; 4+ Cy, and N; = C3 + Cy. The table, in turn,
can be reduced to a host of scalar measures of performance, but in order to preclude
any loss of information (due to the reduction from two to one degree of freedom) two
scalar measures should be considered. A convention is to consider the hit rate and the

false alarm ratio:

Hit Rate = ﬁ , False Alarm Rate = % .

A simultaneous representation of these two measures is conveniently given in a ROC
diagram (Masters 1993) which is simply a parametric plot of the hit rate versus the
false alarm ratio, as the probability threshold varies from 0 to 1. It is easy to show
that a classifier with no ability to discriminate between two classes yields a diagonal
line of slope one and intercept zero; otherwise, the ROC curve lies in the region above
the diagonal line. The area under the curve is often taken as a single (scalar) measure
of the classifier’s performance, and so, a perfect classifier would have an area of 1
under its ROC curve, while a random classifier would have an area of 0.5 (i.e., the
area under the diagonal line). The virtue of the ROC diagram is in its 2-dimensional
expression of performance, thereby maintaining the full dimensionality of the problem.
The expression of performance in terms of ROC diagrams has the additional advantage
that no specific value of the threshold must be specified in determining the optimal
architecture of the MLP. A specific choice of the threshold calls for knowledge of the

costs of misclassification which are user dependent.
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A 2-dimensional representation of the quality of the produced forecasts is their
class-conditional distribution, i.e., a histogram of the probabilities for tornadic and
non-tornadic cases, separately. Such a histogram can display not only to what ex-
tent the classifier discriminates between the two classes, but also how it treats each
class, individually. Since, a perfect classifier would have no overlap between the class-
conditional histograms, the area of the overlap could serve as a scalar measure of
performance; however, it should be acknowledged that such a reduction again neglects

the 2-dimensional nature of the problem.

Another facet of probabilistic forecasts is their reliability, a concept best displayed
in a reliability diagram, where the observed frequency of tornados is plotted against
the MLP-produced probabilities. Reliability refers to the criterion that if the MLP
produces, say, a 20% probability for some circulations, then 20% of such circulations
should be truly tornadic. Then a perfectly reliable set of probabilities would yield a
diagonal line of slope 1. Again, it is possible to compute a scalar quantity (e.g., the
L2 distance between the reliability plot and the diagonal line) that would distill the
diagram into a single measure, as long as one acknowledges that such a reduction again

leads to loss of information.

Richard and Lippman (1991) suggest that for consistency the average of the pos-

terior probability over all cases, p = + >0, y(z"), should approximate the class prior
probability, p = N;/(Ny + N1). Then a measure like D = plog(p/p) would serve as
another scalar measure of the quality (consistency) of the modeled posterior probabil-

ities.

5 Results

As mentioned above, 43 local minima were visited during the training phase. Each
MLP trapped in a local minimum is associated with two values of cross-entropy, one

for the training set and another for the validation set.

11
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Figure 2: The distribution of 43 local minima of a MLP with H = 4 (left), and H = 16
(right), for one subsample training and validation sets.

Figure 2 shows the frequency plot of the 43 values of training and validation cross-
entropy for MLPs with H = 4 and H = 16. It can be seen that the distributions
are somewhat bell-shaped. Therefore, the global minimum, or more accurately the
deepest local minimum is quite distinct from the most-visited local minimum. The
latter is the local minimum which is most likely to be visited for a given bootstrap
trial. Consequently, simple bootstrapping with no regard to whether or not the MLP
is in a “global” minimum can lead to a false conclusion regarding the optimal number
of hidden nodes. Also note that the training and validation curves are farther apart for
the MLP with 16 hidden nodes than that with 4. This is a sign that the 16-hidden-node

MLP is overfitting the training set, because lower training errors are associated with

higher validation errors.

Figure 3 shows scatterplots of training and validation errors (i.e., tv-diagrams). It
can be seen that the validation and the training errors for the 43 minima are correlated,
as expected. For a network with 4 hidden nodes (Figure 3, left) the Pearson’s correla-
tion coefficient is 7 = 0.53. (The probability that a random sample would produce this

value of 7 is 0.0004.) This implies that deeper minima of a MLP with H = 4 tend to
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Figure 3: The tv-diagrams for the 43 local minima of a network with H = 4 (left)
and H = 16 (right), for one subsample training and validation sets. Also shown, are
the respective regression lines highlighting the correlation between the training and
validation errors at the various local minima.

fit the training set better (i.e., without overfitting) than the shallower minima. This
pattern, as well as the sign of r, reverses for larger number of hidden nodes, when the
MLP overfits the training set. Figure 3 (right) shows the tv-diagram for an MLP with
16 hidden nodes; the value of r in this case is —0.25. This illustrates how the sign
and the magnitude of r in a tv-diagram can anticipate the optimal number of hidden

nodes.

Figure 4 shows the tv-diagram for MLPs with 0, 2, 4, 8, and 16 hidden nodes,
for one bootstrap trial. It can be seen that for this subsample, the optimal number of
hidden nodes is 4, because the deepest local minimum reached with 4 hidden nodes has
the lowest validation error. Of course, more bootstrap subsamples must be examined
in a similar way to confirm the optimal number of hidden nodes. Otherwise one has
arrived at an MLP that, although does not overfit the training set, it does overfit the
validation set. As such, it will have no generalization capability. In the present case,
four bootstrap subsamples were examined, confirming that 4 is the optimal number of

hidden nodes for this problem.
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Figure 4: The tv-diagram for H=0 (circle), H=2 (square), H=4 (diamond), H=8 (right
triangle), and H=16 (left triangle) hidden nodes, for one bootstrap trial. The solid line
connects the “global” minimum (i.e., the point with the lowest training cross-entropy)
for each H.

As discussed previously, the performance of the MLP can be considered both in
terms of the forecast probabilities and the skill of the MLP as a 2-class classifier. Even
though the latter calls for the introduction of an additional parameter (the probability

threshold), it is the most common means of expressing performance. To that end, the

ROC diagram provides a concise representation.

Figure 5 shows the ROC curves for the training, validation, and test sets as the
threshold is varied from 0 to 1. Evidently, although the performance of the MLP on
the training and validation sets is comparable, that of the test set is considerably lower.
That is not surprising in that the former are optimistically biased, and only the latter
represents an unbiased measure of generalization performance. The areas under the
three curves are 0.89, 0.87, and 0.73, respectively. Recall that the area under the ROC
curve is bounded by 1.0 and 0.5, corresponding to a perfect classifier, and a classifier

with no ability to discriminate, respectively.

The performance of the MLP is most naturally expressed directly in terms of

the predicted probabilities. This also avoids the introduction of the threshold. As
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Figure 5: The ROC plots of the MLP for the training, validation, and test set.

mentioned previously, one diagram for displaying the quality of the probabilities is
the class-conditional probability density (i.e., histogram) of the MLP output. Figure
6 shows that distribution for the nontornadic and tornadic circulations, separately,
for the training (left), validation (middle), and test (right) sets. It can be seen that
the MLP has a higher affinity for the identification of nontornadic circulations. As
for the tornadic circulations, the MLP produces a relatively flat distribution. Loosely
speaking, the discriminatory ability of the MLP derives primarily from the ability to
identify the nontornadic circulations. The figure corresponding to the test set shows a
somewhat stronger ability to identify tornadic circulations, but that is likely due to the
small sample size of the test set (6 days) as compared to the size of the training and
validation sets (29 days). A larger and more representative test set would be expected

to yield a pattern more similar to that of the training and validation sets.

The area of the overlapping region of the two distributions constitutes a scalar

measure of performance. 7%, and 7.2% of the training and the validation set, respec-
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Figure 6: The class-conditional frequencies of the MLP predicted probabilities, for the
training (left), validation (middle), and test (right) sets.

tively, fall into the overlap region. The same quantity for the test set is 11.2%. In
other words, the overlapping areas are 0.070, 0.072, and 0.112 for the three sets. A
perfect classifier would have an area of 0, and a random classifier would have an area
of 1. Clearly, based on all three sets, the MLLP’s discrimination performance is on the

perfect side.

Figure 7 shows the reliability diagrams as formed from the training (left), validation
(middle), and the test set (right). It can be seen that when the MLP produces a
probability of, say 15%, this is matched by an observed relative frequency of 15%.
The same is true for other produced probabilities, with the exception of probabilities
around 65% and 95%. The error bars on the plots represent 1 standard deviation of
the bootstrap distribution. Therefore, even the exceptions can be considered reliable
within, say, 2 standard deviations. Thus, the produced probabilities are statistically
reliable. The test set shows a slightly different pattern; for instance, the MLP produces
no probabilities higher than 85%, but such differences can again be traced to the test

set’s relatively small size.

The L2 norm between the reliability curve and the diagonal line of the diagram
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Figure 7: The reliability plots of an MLP with 4 hidden nodes for the training (left),
validation (middle), and test (right) sets.

(i.e., the mean square error between the produced probabilities and the observed prob-
abilities) serves as a scalar measure of reliability. These norms are 0.002, 0.04, and
0.05, for the training, validation, and test set, respectively. In theory, the most reliable
norm is 0 and the least reliable norm is 0.33 = (1/3) 2. So, according to this scalar

measure, the predicted probabilities are well on the side of perfect reliability.

Finally, the scalar measure, D = plog(p/p), offers a test of consistency. The prior
probability of tornadic circulation is p = N;/(Ny + Ny) = 0.087, and the values of p
for the training, validation, and test sets are 0.085, 0.082, and .060, respectively. The
corresponding values of the measure D are 0.002, 0.005, and .04. Recall that a perfect
classifier has p = p (i.e., D = 0), and the upper bound to D is co. All of this confirms
that the MLP is faithfully modeling the probabilities.

2 Assuming that the worse-case MLP produces a reliability curve that has a slope of -1 and an
intercept of 1 (i.e., the “other” diagonal), then the L2 distance between the two diagonals - 1/3 - is
the worse-case norm.
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6 Summary

The development of a multilayered perceptron for the prediction of tornados is outlined
with special emphasis placed on the role, in bootstrapping, of the local minima of the
error function. It is argued that if local minima are not taken into account, then the
number of hidden nodes as computed in a bootstrap may be suboptimal. Finally,
the performance of the optimal architecture is gauged in terms of categorical and
probabilistic measures. It is shown that the optimum MLP produces a set of consistent,

discriminatory, and reliable probabilities.
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