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Introduction

Consider:

Question: How do the inputs affect the outputs?
General Answer: Sensitivity Analysis (SA).

However, different people mean different things by SA. E.g.
– How does input uncertainty propagate (Uncertainty A.)?
– How does the addition of a new observation affect the outcome?
– How is output uncertainty apportioned among the inputs?

And they do it for different reasons. E.g.
– Knowledge discovery.
– Ranking of the inputs.
– Dimensionality Reduction.
– Model tuning. Etc.
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Introduction ...

Three components:

1) Experimental Design.
– Make or break.
– No experimental error. Computer Data. In vitro vs. In silico.
– How should the inputs be selected?
– To optimize accuracy and precision.
– random sampling will not give the most precise estimate.

2) Choice of SA method.
– Performance vs. inclusion/exclusion of inputs.
– One At a Time.
– High-dimensional space is mostly corners.
– Generally three types:
. – Local (derivatives, adjoint),
. – Screening (factorial designs)
. – Global (variance-decomposition)

3) Method for estimating conditional expectations.
– Monte Carlo
– Emulation (Gauss Process/Krig, Poly. Regression, NN, ...)

A few issues specific to computer experiments:
– No experimental error to minimize.
– Emulator must have zero error on training set.
– Error on test set must be consistent with realistic uncertainty.

Q: Why AI/CI? A: 1 and 3.
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Experimental Design

Q: What values of the inputs should be selected?

– Impossible to explore all values. So, sample!
– Simple random sample does not give most precise estimates.
. – Who cares?

With low precision (black): Cannot pick better algorithm.
If/when forced, may take B.
But with higher precision, A wins.

– Space-filling samples/designs give more precise estimates. E.g.,
– Latin hypercube sampling

A simple random sample (black) and a latin square sample (red).
No 2 red dots have a row or col in common.
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Simple random vs. Latin square sampling

Estimate mean of z-axis:

Distribution of means according to simple random (black) and
latin square (red) sampling, for different sample sizes.
True mean = horizontal line.
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Variance-Based SA

Two “theorems” save the day:

V ar[Y ] = E[V ar[Y |X ] ] + V ar[E[Y |X ] ]

Y = η(X1, X2, ...) = E[Y ] + z1(x1) + z2(x2) + z12(x1, x2) + ...

where
zi(xi) = E[Y |xi]− E[Y ]

z12(x1, x2) = E[Y |x1, x2]− E[Y |x1]− E[Y |x2] + E[Y ]

...
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Measures of Sensitivity

Reduction in uncertainty of Y , after Xi is learned:

Vi = V ar[E[Y |Xi] ]

Reduction in uncertainty of Y , after X1 and X2 are learned:

V12 = V ar[E[Y |X1, X2]]

Uncertainty in Y remaining, after X2 is learned:

VT1 = V ar[Y ]− V ar[E[Y |X2]] (1,2) not a typo!

Main effect index of Xi::

Si = Vi/V ar[Y ]

Total effect index of Xi:

STi = VTi/V ar[Y ]
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Example 1

Y = η(X1, X2) = X1

General Indep X1, X2

z1 x1 − E[X1] x1 − E[X1]
z2 E[X1|X2]− E[X1] 0
z12 −z2(x2) 0

V1 V [X1] V [X1]
V2 V [E[X1|X2]] 0
V12 V [X1] 0
VT1 V [X1]− V2 V [X1]
VT2 0 0
S1 1 1
S2 V2/V [X1] 0

ST1 1− S2 1
ST2 0 0
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Example 2

Y = α + β1 X1 + β2 X2 + β12 X1 X2

Theorem: Things are messy. Proof:

z1 = β1(x1 − E[X1])

+ β2(E[X2|X1]− E[X2])

+ β12(x1E[X2|X1]− E[X1X2])

z2 = similar

z12 = β1(E[X1]− E[X1|X2])

+ β2(E[X2]− E[X2|X1])

+ β12(x1 x2 − x1E[X2|X1]− x2E[X1|X2]− E[X1X2])

Even for indep. X1, X2, and E[Xi] = 0

z1 = β1 x1 − β12E[X1X2]

z2 = β2 x2 − β12E[X1X2]

z12 = β12(x1 x2 − E[X1X2])

Etc. for Vi, VTi, Si, STi.

Moral:
If model = linear (β12 = 0), the Si ∼ (std regress coeff)2.
Else, not, and complicated.
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Example 3

Black Box = Lorenz, 1963

x

y

z

Inputs = s, r, b.
Outputs = Xmax, Ymax, Zmax.
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Main conclusion for Lorenz

All sensitivity measures:

According to most measures, Xmax is
– most sensitive to r,
– not so sensitive to s, and b,
– but there exists an “interaction” between s and r,
– and between r and b,
– but not as much between s and b.
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Peeking into the black box

The blackbox according to one NN emulator:

X_max
Z_max

b Fit
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Final Remarks

– Sensitivity Analysis is intuitive, but ambiguous.
– Careful attention to experimental design is crucial.
– Variance-based methods naturally tie SA to emulators.
– Not clear (to me) if “fancy” emulators are necessary.
– Many AI techniques come with natural ranking of inputs.
– But in most, an “explanation” is lacking.
– Ranking based on variance is explanatory.
– But does not assure better performance.

Coming soon:
- Emulation with gaussian process (zero trn error) vs. NN (not).
- Extension to Multivariate (multiple output).
- Orthogonal designs to address collinearity.
- Connection with ensemble methods.
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