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ABSTRACT

Numerical weather predictionmodels have a number of parameters whose values are either estimated from

empirical data or theoretical calculations. These values are usually then optimized according to some criterion

(e.g., minimizing a cost function) in order to obtain superior prediction. To that end, it is useful to knowwhich

parameters have an effect on a given forecast quantity, and which do not. Here the authors demonstrate

a variance-based sensitivity analysis involving 11 parameters in the Coupled Ocean–Atmosphere Mesoscale

Prediction System (COAMPS). Several forecast quantities are examined: 24-h accumulated 1) convective

precipitation, 2) stable precipitation, 3) total precipitation, and 4) snow. The analysis is based on 36 days of

24-h forecasts between 1 January and 4 July 2009. Regarding convective precipitation, not surprisingly, the

most influential parameter is found to be the fraction of available precipitation in the Kain–Fritsch cumulus

parameterization fed back to the grid scale. Stable and total precipitation aremost affected by a linear factor that

multiplies the surface fluxes; and the parameter that most affects accumulated snow is the microphysics slope

intercept parameter for snow. Furthermore, all of the interactions between the parameters are found to be either

exceedingly small, or have too much variability (across days and/or parameter values) to be of primary concernAU1 .

1. Introduction

Sensitivity analysis (SA) refers to a wide suite of

techniques for assessing the effect of a set of quantities

on another. In meteorological circles, the latter (here

called output) is usually some forecast quantity of in-

terest (e.g., total accumulated precipitation, 2-m temper-

ature, 10-m wind speed, etc.). The former (here called

input), is usually either analyzed initial conditions or

model/algorithm parameters, or both. In some cases the

input is an observation, an entire class of observations, or

the specification of background errors in data assimilation,

whose effect is of interest. Approaches based on adjoints,

and ensembles, or both have been proposed for perform-

ing SA (Ancell and Hakim 2007; Daescu and Langland

2013; Davis and Emanuel 1991; Gombos and Hansen

2008; Hacker et al. 2011; Torn and Hakim 2008).

The approaches tend to fall into two broad (not mu-

tually exclusive) categories; some are designed to deal

with a large number of inputs in a numerically efficient

manner. Adjoint-based models are one such example

(Ancell and Hakim 2007). Indeed, a data assimilation

system can be said to perform SA, albeit only implicitly.

Alternative approaches are better suited to smaller

number of inputs, and may even be more computa-

tionally intensive. Variance-based SA methods belong

to this category (McKay et al. 1979; Oakley andO’Hagan

2004; Saltelli et al. 2008, 2010; Santner et al. 2003; Sobol

1993). The value of these approaches is in providing a
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more in-depth assessment of the relationship between the

input and the output. The results can have practical im-

plications (e.g., identifying the parameters whose values

must be set carefully and those deserving of less atten-

tion). Knowledge of both sets of parameters is important;

setting the value of an influential parameter deserves

care and attention, while far less attention can be paid to

the task of setting the value of a noninfluential parameter.

Variance-based methods can also lead to a better theo-

retical understanding of the nature of the underlying re-

lationship between the input and output (Bolado-Lavin

and Badea 2008; Marzban 2011, 2013).

In a recent effort (Holt et al. 2011) 11 parameters in

the Coupled Ocean–Atmosphere Mesoscale Prediction

System (COAMPS)1 were varied for the purpose of

studying their effect on the forecasts.2 Here, a variance-

basedmethod is applied to that problem. Variance-based

methods are ideally suited to computer experiments (e.g.,

data generated from a computer model, resulting from

changing the model parameters; Bowman et al. 1993;

Fang et al. 2006; Sacks et al. 1989a,b; Welch et al. 1992).3

Here, the choice of the parameters is the same as that of

Holt et al. (2011), but the manner in which their values

are varied is different. Whereas in Holt et al. a handful of

different values were selected about the mean of each

parameter, here a method of sampling is employed which

is known to have desirable properties; for example, it is

known to provide more precise (at least, no less precise)

estimates than simple random sampling. A variance-

based SA method, along with this sampling scheme,

was recently demonstrated on the Lorenz’63 model

(Marzban 2011, 2013). Themain goals of this paper are 1)

to demonstrate the application of the variance-based SA

methodology to an operational weather forecasting model

and 2) to study the effect of the 11 parameters on several

types of precipitation and snow forecasts.

2. Data

Only the atmospheric portion of COAMPS (Hodur

1997) is used in this study. The COAMPSmodel is based

on a finite-difference approximation to the fully com-

pressible, nonhydrostatic equations and uses a terrain-

following vertical coordinate transformation. The

compressible equations are integrated using a time-

splitting technique with a semi-implicit formulation for

the vertical acoustic modes (Klemp andWilhelmson 1978).

A prognostic equation for the turbulence kinetic en-

ergy budget is used to represent the planetary boundary

layer and free-atmospheric turbulent mixing and diffu-

sion (Hodur 1997). The Louis (1979) surface-layer pa-

rameterization, which makes use of a surface energy

budget based on the force-restore method, is used to

represent the surface fluxes. Subgrid-scale moist con-

vection is represented using the Kain and Fritsch (1993)

parameterization. The grid-scale evolution of the moist

processes is predicted explicitly from budget equations

for cloud water, cloud ice, raindrops, snowflakes, and

water vapor following Rutledge and Hobbs (1983). The

shortwave and longwave radiation processes are repre-

sented following Harshvardhan et al. (1987). Results

from COAMPS model simulations have been evaluated

on numerous occasions using special observations and

field campaign datasets and have been demonstrated to

accurately simulate mesoscale flows (e.g., Hodur 1997;

Doyle et al. 2011; Jiang and Doyle 2009).

The forecast data used in this study are produced us-

ing COAMPS version 4.2.2 run at the Applied Physics

Laboratory, University of Washington. The COAMPS

model was forced using 0.58 resolution initial and one-

way boundary conditions from the Navy Operational

Global Atmospheric Prediction System (NOGAPS).

The COAMPS analysis domain is shown in F F1ig. 1 (white

frame) and is based on NOGAPS initial fields and local

observations. For computational efficiency COAMPS

was run with a grid spacing of 81 km.

The model parameters examined here are shown in

T T1able 1. Computer data are generated by sampling 99

points from the 11-dimensional space of the parameters

(called the empirical region).4 The sampling is done via

the Latin hypercube sampling (LHS) method described

in Marzban (2011, 2013). Briefly, this type of sampling is

designed to assure that no two of the 99 points have the

same value for any of the 11 parameters. In other words,

the sampling scheme is designed to avoid any clustering

of the 99 points, an outcomewhich is not ruled out under

random sampling. The result of such sampling is more

precise estimates (at least, no less precise estimates)

than random sampling. For this and other reasons, LHS

is usually the method of choice in SA of computer ex-

periments (Cioppa and Lucas 2007; Douglas 2005;

1COAMPS is a registered trademark of the Naval Research

Laboratory.
2Holt et al. explored additional parameters, particularly in the

planetary boundary layer andmicrophysics parameterizations. The

parameters were identified through sensitivity tests and consulta-

tion with the parameterization developers. The 11 parameters were

found to be the most important parameters in generating ensemble

spread and producing reasonable spread–skill relationships.
3Data generated from computer experiments are characterized

by the absence of variability across repeated runs. They are distinct

from ‘‘physical experiments’’ where repeating an experiment

generally leads to different results. 4 Sampling 50 points resulted in similar conclusions.
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Marzban 2011, 2013). As in Marzban (2011, 2013), LHS

is also compared with simple random sampling (SRS).

For each of 36 dates, beginning with 1 January and

ending with 4 July 2009, at approximately 4-day in-

tervals, a different set of 99 points are selected, and

COAMPS is run at each of the 99 points in the empirical

region.5 The specific dates are given in TT2 able 2. The 4-

day interval is selected to enhance the independence of

the data from day to day. For each run, different types of

24-h accumulated precipitation are considered: convec-

tive, grid scale (or stable), total (convective plus stable),

and total accumulated snow. These quantities are there-

fore the aforementioned forecast quantities (or outputs),

whose dependence on the model parameters (i.e., inputs)

is the subject of this work. These four types of pre-

cipitation will be denoted by the symbols conv, stab, total,

and snow, respectively. These forecast quantities are se-

lected because the data analyzed here begins on 1 Janu-

ary (i.e., when there is significant snow over some parts of

the region), and so it is possible that different values of

the parameters will shift snow to rain or vice versa. Only

‘‘heavy’’ precipitation is examined—specifically, the 90th

percentile across the spatial domain.

3. Method: Variance-based SA

A thorough assessment of variance-based SA, as well

as a comparison with other SA methods, has been

performed by Bolado-Lavin and Badea (2008). Suf-

fice it to say that the main distinguishing character-

istic of these methods is that they rely on probability

distributions to describe the inputs and the outputs.

As a result, one disadvantage is that they tend to be

computationally intensive compared to methods

that are not based on probability distributions. How-

ever, that disadvantage is compensated by the ability

of the method to produce estimates of uncertainty as

well.

Let the output (i.e., the forecast quantity) be denoted

by y and the inputs (i.e., model parameters) be denoted

by x1, x2, . . . , xn. To statistically quantify the mathe-

matical function y 5 h(x1, x2, . . . , xn), one employs the

high-dimensional model representation (Sobol 1993),

where the function is written in terms of expected

values:

y5h(x1, x2, . . . , xn)5E(y)1 �
n

i
zi(xi)

1 �
i,j

zij(xi, xj)1⋯ , (1)

where

zi(xi)5E(y j xi)2E(y) , (2)

zij(xi, xj)5E(y j xi, xj)2E(y j xi)2E(y j xj)1E(y) . (3)

The zi(xi) is referred to as the main effect, and the

zij(xi, xj) is called the first-order interaction between the

FIG. 1. The spatial domain (white rectangle) of the analysis.

5 Consequently, across the 36 days, the number of points sampled

in the empirical region is in fact much larger (i.e., 363 995 3564).
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ith and jth input (parameter). Higher-order terms are

assumed to be negligible.

All of the quantities in (1)–(3) are written in terms of

E(y j xi) and E(y j xi, xj), and so these conditional ex-

pected values must be estimated from data on y and xi.

In this article, for each of the 36 days, the necessary data

are generated by the LHS and SRS procedures men-

tioned in the previous section. It is known that an ordi-

nary least squares fit to data on y (as response) and xi (as

predictor) provides an estimate of E(y j xi) (Draper and

Smith 1998). Similarly, a least squares fit to y and two

predictors xi and xj yields an estimate for E(y j xi, xj).
Although more sophisticated methods exist for esti-

mating these expected values (see the summary and

discussion section), this regression approach is the one

used in the current work. Regardless of how the ex-

pected values are estimated, an issue deserving of at-

tention is the complexity of the underlying statistical

models; a very complex model, with nonlinear terms and

interaction terms, can lead to overfitting, while an overly

simple model may not be able to capture possible non-

linearities in the data. Here, a polynomial regression of

order two is used for estimating all expected values.

Specifically, to estimate E(y j xi), the regression model

y5a0 1a1xi 1 a2x
2
i is used and to estimate E(y j xi, xj),

the model is y5a0 1a1xi 1b1xj 1a2x
2
i 1b2x

2
j 1 gxixj.

Even the more complex of these two models has only 6

coefficients, and so, 99 cases (i.e., size of the empirical

region) are adequate for their estimation. As such, the

models have some nonlinearity, but not so much that

would readily allow overfitting.

A number of sensitivity measures have been proposed

in the literature all based on a decomposition of func-

tions called the high-dimensional model representation

(Saltelli et al. 2010; Sobol 1993; Marzban 2011, 2013).6

Here for simplicity, focus is placed on only two:

Si 5
V[E(y j xi)]

V[y]
, Sij 5

V[zij(xi, xj)]

V[y]
. (4)

T

AU2

he measure Si gauges the expected reduction in the

variance of y, given xi, expressed as the proportion of the

total variance in y, V[y]. Here Sij measures the inter-

action between xi and xj, again expressed as a pro-

portion. Under ideal circumstances when the xi are

orthogonal and the higher-order terms in (1) can be

neglected, then Si and Sij completely decompose the

total variance of y. As such, they offer a reasonably

complete assessment of the sensitivity of all the pa-

rameters and their interactions. The quantities Si and Sij
are essentially normalized versions of zi and zij, and are

therefore referred to as main effects and interactions,

respectively.

Given the above-mentioned design of the experiment,

the sensitivity measures are subject to two sources of

variability: daily variability and sampling variability in

parameter space. To estimate the former, all sensitivity

measures are computed for each of the 36 days in the

dataset. To produce a single value of a sensitivity mea-

sure, 99 points in the 11-dimensional parameter space

are selected. Therefore, an estimate of the variability

due to sampling in parameter space is provided by tak-

ing multiple (here 20) sets of the 99 parameter values.

Given that the main aim of this work is to identify

TABLE 1. The 11 parameters studied in this paper. Also shown are the default values and the range over which they are varied.

Kain–Fritsch (KF), planetary boundary layer (PBL), and lifting condensation level (LCL).

ID Name (unit) Description Default Range

1 delt2KF (8C) Temperature increment at the LCL for KF trigger 0 22, 2

2 cloudrad (m) Cloud radius factor in KF 1500 500, 3000

3 prcpfrac Fraction of available precipitation in KF fed

back to the grid scale

0.5 0, 1

4 mixlen Linear factor that multiplies the mixing length

within the PBL

1.0 0.5, 1.5

5 sfcflx Linear factor that modifies the surface fluxes 1.0 0.5, 1.5

6 wfctKF Linear factor for the vertical velocity (grid scale)

used by KF trigger

1.0 0.5, 1.5

7 delt1KF (8C) Another method to perturb the temperature

at the LCL in KF

0 22, 2

8 autocon1 (kgm23 s21) Autoconversion factors for the microphysics 0.001 1 3 1024, 1 3 1022

9 autocon2 (kgm23 s21) Autoconversion factors for the microphysics 4 3 1024 4 3 1025, 4 3 1023

10 rainsi (m21) Microphysics slope intercept parameter for rain 8.0 3 106 8.0 3 105, 8.0 3 107

11 snowsi (m21) Microphsyics slope intercept parameter for snow 2.0 3 107 2.0 3 106, 2.0 3 108

6A special case of such a decomposition for binary variables has

been developed by Stein and Alpert (1993).
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important (and unimportant) parameters across all days

and all parameter values, the two sources of variability

are combined, and the resulting histograms are sum-

marized and presented as boxplots. A comparison of the

two sources of variability is also presented.

The assessment of the ‘‘statistical significance’’ is not

straightforward when dealing with computer experi-

ments, because the very notion of statistical significance

presumes the existence of an experimental error, which

in computer experiments does not exist.7 In other words,

in the current data V[y j x1, x2, . . . , x11]5 0.8 No attempt

is made to present a general procedure for hypothesis

testing. The only question that is addressed is whether

the variability in the sensitivitymeasure for a givenmodel

parameter is sufficiently large to preclude a reliable

conclusion regarding the sensitivity of that parameter.

To be more specific, consider the values of Sij one may

obtain for 1 day. For 11 parameters, there will be (11 3
10)/2 5 55 such values. By chance alone, some of these

values will be large (near 1), while others will be small

(near 0). The question is whether the variability of each

of the 55 Sij values, for fixed i, j, is sufficiently small to

suggest that the interaction exists (across all days and all

parameter values). To answer that question, the histo-

gram of all values of Sij (across 36 days and across 55

pairwise comparisons) is used to approximate its sam-

pling distribution under the null hypothesis of no in-

teraction. This approximation will be accurate if the true

number of interacting parameters is small. As will be

shown below, the observed pattern of the distributions

of Sij suggests that the approximation is reasonable.

Oakley and O’Hagan (2004)AU3 propose that it is useful

to display the functional form of the dependence of the

forecast quantity on the parameters. For that purpose,

theE(y j xi) are plotted versus each of the 11 parameters

(standardized to have zero mean and one standard

deviation). Viewing E(y j xi, xj) is difficult because of its
three-dimensional nature, and so will not be considered

here.

4. Demonstration: Two parameters

Before embarking on the analysis of the 11-parameter

sensitivity analysis, it is helpful to examine a 2-parameter

situation. This allows for the visualization of the problem

in three dimensions. Also, and again for visual acuity,

only 50 points (instead of 99) are selected from the em-

pirical region. For example, F F2ig. 2 shows the result when

the empirical region is spanned only by the fraction of

precipitation fed back to the grid scale in the Kain–

Fritsch parameterization (prcpfrac) and a linear factor

that changes the PBL mixing length (mixlen) (Table 1),

and when the forecast quantity is the 90th percentile

(across the domain) of 24-h accumulated convective

precipitation (conv). The 50 larger circles display the

data generated according to the LHS method described

previously, only for one day (1 January 2009). The fact

that these data are generated from a computer experi-

ment is evident in the manner in which they all reside on

a relatively simple surface—in this case a plane. Had

there been any experimental error, these points would

have fallen not exactly on the surface, but scattered

about it.9 Note that, according to this figure, convective

precipitation is sensitive to both prcpfrac and mixlen (as

evidenced by the nonzero slopes in both directions), but

much more so on the former. This result makes intuitive

sense since the changes to the feedback to the grid scale

most directly impact the convective precipitation, more

so than the boundary layer mixing length.

Different insight is gained from viewing the data as

two-dimensional scatterplots. F F3igure 3 shows the result

for 20 days (with different colors); only 20 of the 36 days

are shown so as to avoid cluttering the graphs. From the

TABLE 2. The dates of the 36 days on which the SA is performed.

1 Jan 2009 5 Jan 2009 17 Jan 2009 21 Jan 2009 25 Jan 2009 29 Jan 2009

6 Feb 2009 10 Feb 2009 14 Feb 2009 18 Feb 2009 22 Feb 2009 26 Feb 2009

2 Mar 2009 6 Mar 2009 10 Mar 2009 14 Mar 2009 18 Mar 2009 22 Mar 2009

26 Mar 2009 30 Mar 2009 3 Apr 2009 7 Apr 2009 11 Apr 2009 19 Apr 2009

23 Apr 2009 27 Apr 2009 1 May 2009 9 May 2009 13 May 2009 17 May 2009

21 May 2009 25 May 2009 29 May 2009 22 Jun 2009 30 Jun 2009 4 Jul 2009

7Of course, the COAMPS predictions are subject to initial

analysis error, model error, etc. However, those errors are less of

a concern because focus is placed only on the manner in which the

predictions vary with the parameters.
8 The variability that is minimized in the aforementioned re-

gression models is due to the variability in y brought about by the

changes in the parameters not used in the regression models.

9 Technically, data from a computer experiment are not required

to reside on a smooth surface. In other words, it is entirely possible

that the squares in Fig. 2 would have not fallen on a plane; in that

case, one would require a more complex model for estimating

E(y j x1, x2).
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top-left panel, it can be seen that the above-mentioned

strong dependence of convective precipitation on

prcpfrac exists across all days. As for the above-noted

weaker dependence on mixlen, here it is reflected in the

larger scatter; that dependence is also persistent across

days, as evidenced by the manner in which the various-

colored curves are correlated.

The remaining panels in Fig. 3 show analogous results

but for stable (top right), total precipitation (bottom

left), and accumulated snow (bottom right). In contrast

to the relationship between convective precipitation and

prcpfrac, where the former decreases with increasing

prcpfrac, the effect of prcpfrac on stable precipitation is

reversed, and not as pronounced. Once again these re-

sults are expected: increasing the feedback from the

convective to the grid-scale precipitation should de-

crease the convective precipitation and increase the

grid-scale precipitation. The effect of these two param-

eters on total precipitation is a combination of the ef-

fects on convective and stable precipitation: the linear

trend dependence of total precipitation is weak (as in

stable precipitation), but decreasing (as in convective

precipitation). As for accumulated snow, these graphs

make it difficult to identify any dependence on the two

parameters; however, see the next paragraph.

The variance-based SA offers a more objective as-

sessment of these relationships. The left column in FF4 ig. 4

shows the boxplot (across 20 days) of the sensitivity

measures Si and Sij. Based on the Si boxplots (top left),

prcpfrac has a larger effect on convective precipitation

than mixlen does. The same pattern exists for stable

precipitation, although to a lesser degree (top right).

The effect of the two parameters on total precipitation is

comparable; the comparable size of the boxplots (bot-

tom left) further suggests that the variability is suffi-

ciently large so as to preclude any reliable conclusions

regarding the true effect of these parameters on total

precipitation across multiple days. For accumulated

snow (bottom right), the pattern is reversed: mixlen has

a stronger effect on snow accumulation than prcpfrac;

but the relatively larger size of the boxplots (cf. those for

convective precipitation), implies that there is larger

variability in the sensitivities.

The interaction between the parameters is assessed

through the Sij boxplots (Fig. 4). For all four forecast

quantities, the distribution of the Sij is contained to small

values; the medians of the distributions are in the 0.02–

0.09 range. In other words, about 2%–9% of the vari-

ability in y can be attributed to interaction between

prcpfrac and mixlen. A more detailed analysis of in-

teractions is carried out in the next section.

5. Results: 11 parameters

Although the above scatterplots (e.g., Fig. 3) are

useful for determining the sensitivity of forecast quan-

tities on model parameters, that scatterplot-based ap-

proach is not possible when more than two parameters

are at hand. In that situation, sensitivity can be assessed

directly through themeasures Si and Sij. The distribution

(across days and parameter values) of those measures is

shown in F F5ig. 5, when the forecast quantity is convective

precipitation (conv). With a median of Si around 40%,

prcpfrac is the most influential parameter, followed by

the Si ; 25% for temperature perturbation at the lifting

condensation level in the convective parameterization

(delt2KF). Recall that these percentages refer to the

proportion of the variance of y that can be attributed to

the respective parameter. The remaining parameters

have even lower contributions to the variability in con-

vective precipitation.

The interaction between the parameters can be seen

in the bottom panel of Fig. 5. The labels along the x axis

refer to the numerical labels assigned to each parameter

(top-right corner of the figure). For example, the label

‘‘2, 3’’ refers to the parameters 2 and 3 [i.e., the cloud-

radius factor in Kain–Fritsch (cloudrad) and prcpfrac].

Similarly, the label ‘‘3, 11’’ denotes the parameters 3 and

11 [i.e., prcpfrac and the slope intercept parameter for

snow in the microphysics (snowsi)]. The horizontal

dashed line at about Sij 5 0.025 marks the 95th per-

centile of the distribution of all Sij values—itself dis-

played at the leftmost side of the figure. As discussed in

FIG. 2. The response surface of convective precipitation (conv)

vs two model parameters: prcpfrac and mixlen. The 50 large

squares are the data generated from the computer experiment, all

residing on a plane (displayed as small points).
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the method section, assuming the number of significant

interactions is relatively small compared to the total

number of interactions (here 55), then this distribution

serves as an approximation to the null distribution of Sij.

In other words, if the distribution of a Sij is well above

the 0.025 line, then one may conclude that the corre-

sponding interaction is statistically significant. Con-

versely, if the 0.025 line falls well within the boxplots of

Sij, then one cannot conclude anything. And if the box-

plot is well under the 0.025 line, then, the corresponding

interaction is consistent with a no-interaction hypothesis.

An alternative method for assessing statistical signif-

icance is considered in the summary and discussion

section.

For the pattern of distributions shown in the bottom

panel of Fig. 5, the aforementioned assumption (that the

number of large interactions is small) is not violated,

because in fact no interactions appear to be anomalously

large. In fact, the majority of the 55 boxplots fall well

under the horizontal line at 0.025, suggesting that there

is no statistically significant interaction between the

corresponding parameters.

FIG. 3. Scatterplots showing the relationship between the forecast quantities (top left) convective precipitation,

(top right) stable precipitation, (bottom left) total precipitation, and (bottom right) accumulated snow vs prcpfrac

and mixlen. The different colors represent 20 different days. The vertical bars mark default values of the model

parameters.

Fig(s). 3 live 4/C
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A few of the boxplots do extend vertically to the point

of including/overlapping the 0.025 line. The most nota-

ble examples are all the interactions involving the pa-

rameter ‘‘3’’ (i.e., prcpfrac). It follows, therefore, that no

conclusion can be drawn regarding the value of the

corresponding interactions. These interactions can be

said to be statistically nonsignificant. Stated differently,

the large variability of these interactions makes it diffi-

cult to infer whether or not the interactions are zero.

One specific interaction (‘‘1, 7’’) is marginally above the

horizontal line, and so, is marginally nontrivial.

Then, given that the overwhelming majority of the

boxplots are mostly below the 0.025 line, one can say

that these interactions are not statistically significant. In

other words, the results found here are consistent with

a no-interaction hypothesis. Moreover, the magnitude of

all interactions is relatively small (between 0% and 6%,

andwith only one interaction extending to 10%). For these

reasons, when setting the values of these parameters, it

may be reasonable to ignore their interactions. Also, the

absence of interactions suggests that the inclusion of other

parameters in the sensitivity analysis will not affect the

results found here (unless the additional parameters are

found to interact with those examined here.)

The sensitivity results for stable precipitation are

shown in F F6ig. 6. The most influential parameter is the

FIG. 4. The distribution of (top figure in each panel) sensitivity measures Si and (bottom figure in each panel) the

interaction measure Sij for (top left) convective precipitation, (top right) stable precipitation, (bottom left) total

precipitation, and (bottom right) accumulate snow.
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linear factor that modifies the surface fluxes (sfcflx),

explaining about 50% of the variability in stable pre-

cipitation. The variability of this quantity is, however,

relatively large varying from 0% to 70%. The next

most influential parameters are prcpfrac, delt1KF, and

autocon2 (i.e., 3, 7, and 9). The remaining main effects

are all small, never extending above and beyond ex-

plaining 10% of the variability in stable precipitation.

As for interactions, all are either consistent with a no-

interaction hypothesis (i.e., are mostly below the hori-

zontal line), or have too much variability to allow for

a definitive conclusion.

The results for total precipitation are shown in FF7 ig. 7.

Specifically, total precipitation is unambiguously effected

most by sfcflx, and to a far lower degree by autocon2. The

remaining parameters almost certainly have no effect on

total precipitation. And the majority of the interactions,

too, are almost certainly zero. The exceptions are the

interactions involving parameter ‘‘5’’ (i.e., stcflx); the

distributions of all of these interactions significantly

overlap the horizontal line, and so their statistical sig-

nificance cannot be established.

The sensitivity measures for accumulated snow are

shown in F F8ig. 8. The most prominent feature of the main

effects is that the two parameters that have relatively

large main effects—sfcflx and snowsi—are also the ones

with relatively large variability. This makes it difficult to

‘‘fine-tune’’ the accumulated snow. The majority of the

interactions are again small or zero, with the exception

of the interactions involving sfcflx and snowsi, whose

value cannot inferred because of their large variability.

F F9igure 9 shows E(y j xi) for one day (1 January 2009),

when y represents convective precipitation. The 11

curves correspond to the 11 parameters under study.

For visual acuity, the parameter values have been stan-

dardized to have zeromean and one standard deviation.10

Most of the 11 curves are relatively ‘‘flat’’ and/or with

small sensitivity measures. The thickest curve corre-

sponds to prcpfrac, while the next thick curve corre-

sponds to delt1KF. It can be seen that the expected value

FIG. 5. (top) The distribution of the sensitivity measures Si and (bottom) the interaction

measures Sij for convective precipitation (conv). See text for explanation of the labels along the

x axis.

10 The gaps in the curves are a consequence of missing data (e.g.,

unavailability of the necessary files for running COAMPS).
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of convective precipitation decreases from about 15mm

to about 0, as prcpfrac spans its full range from 0% to

100%. The effect of delt1KF on convective precipitation

is the opposite. These conclusions, although based on

the E(y j xi) for one day, are consistent with the analysis

of the sensitivity measures across all days in the study:

most parameters have little or no effect on convec-

tive precipitation, with the exception of prcpfrac and

delt1KF.

In this article, the focus has been on assessing the

strength of main effects and interactions across all days

and all parameters. For that reason, the variability dis-

played in the boxplots has reflected daily variability as

well as sampling variability in parameter space. In some

situations, however, it may be important to examine the

two contributions separately–for example, in exploring

the aforementioned possibility that interactions may

exist only for certain days and/or only for certain pa-

rameter values. FF10 igure 10 shows the corresponding

boxplots for when the forecast parameter is convective

precipitation. It is interesting that the two sources of

variability are comparable. This suggests that one should

not be ignored in favor of the other, and that both play an

important role in assessing sensitivity.

As mentioned previously, theoretical considerations

suggest that LHS cannot give less precise estimates than

SRS. This expectation was demonstrated in Marzban

(2013) on the Lorenz’63 model. The application of the

method to COAMPS leads to the same conclusion.

F F11igure 11 compares the distribution of the sensitivity

measure S, for the 11 parameters, under the two sam-

pling schemes; the forecast quantity is convective pre-

cipitation. It can be seen that LHS providesmore precise

estimates (although only marginally) than SRS for pa-

rameters that have an effect on convective precipitation.

For the parameters whose effect on convective pre-

cipitation is not clear, LHS and SRS yield comparable

estimates.

6. Summary and discussion

In the approach adopted here, the assessment of the

effect of model parameters on forecast quantities in-

volves data generated from a computer experiment.

Variance-based SA methods are ideally suited to ana-

lyzing such data. Recently, that method was illustrated

on the Lorenz’63 model (Marzban 2011, 2013). Here,

the method is applied to a complex, nonhydrostatic

FIG. 6. As in Fig. 5, but for stable precipitation (stab).
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mesoscale atmospheric prediction model with complex,

nonlinear physical parameterizations (i.e., COAMPS).

A total of 11 model parameters (Table 1) and 4 forecast

quantities are considered: convective, stable, and total

precipitation, and accumulated snow. The expectation

that convective precipitation is most affected by prcpfrac

is confirmed; delt1KF is also found to be a strong pre-

dictor. Stable and total precipitation have a similar set of

main effects, with sfcflx appearing as the most influential

parameter. The parameter sfcflx also has a strong in-

fluence on accumulated snow, but is second to snowsi.

Although emphasis has been placed on identifying the

influential parameters, it is worth pointing out that the

identification of noninfluential parameters is also im-

portant, because one may then redirect resources to the

fine-tuning of the influential parameters.

There appears to be little evidence for statistically or

physically significant interactions between the parame-

ters. As such, determining the ‘‘optimal’’ values of the

parameters may be performed in simplistic (e.g., one at a

time) fashion (Marzban 2013). However, a certain pat-

tern of interactions is worth nothing: interactions in-

volving a parameter with a largemain effect are generally

accompanied with large variability. For example, in

Fig. 7, every interaction that involves sfcflx (‘‘5’’)—a pa-

rameter with a large main effect—has a relatively large

boxplot; some of these interactions are over 10% (e.g.,

‘‘5, 6’’). The same pattern exists for convective and stable

precipitation (Figs. 5 and 6) and for accumulated snow

(Fig. 8). It is possible that this association (between pa-

rameters with large main effects and interactions in-

volving these parameters) is an artifact of themethodology.

But another possible explanation is that there exist certain

days and/or parameter values in the data for which the

interactions are in fact significant. Work is under way to

settle that question.

It is important to point out that these conclusions are

true only for the specific settings of this study. For ex-

ample, the conclusions may not hold if the resolution of

the model is higher, if the measure of convective pre-

cipitation is different from the 90th percentile of pre-

cipitation forecasts, or if the model is run on dates

beyond the span of those shown in Table 2.

Another brief comparison between the work done

here and that of Holt et al. (2011) may provide fur-

ther perspective. Holt et al. sample 29 points in the

FIG. 7. As in Fig. 5, but for total precipitation (total).
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11-dimensional parameter space, as opposed to the 99

points sampled here. Themanner in which the points are

selected is according to LHS and SRS, compared with

the one-at-a-time (OAT) method used in Holt et al. The

short-comings of the OAT method are explained in

Marzban (2013). Beyond differences in sampling, an-

other difference is that the variance-based method nat-

urally provides scalar summary measures of sensitivity

(e.g., S); Holt et al. produce all 29 ‘‘paths’’ and do not

summarize them into a single sensitivity index. Finally,

the current work examines daily variability, an issue that

does not arise in Holt et al. at all.

It is possible to provide some physical insight into the

results found here. Some of the results are readily

interpreted from the description of the Kain–Fritsch

(KF) parameterization scheme (Stensrud 2007). Re-

ferring to Fig. 3, it can be seen that convective pre-

cipitation is strongly and negatively correlated with

prcpfrac [i.e., the fraction of available precipitation fed

back to the grid from the KF scheme (also evident in

Fig. 9), while stable or grid-scale precipitation is posi-

tively correlated with prcpfrac]. In other words, prcpfrac

acts to regulate the proportion of precipitation going

into convection (parameterized) versus going into stable

(explicit microphysics) precipitation, and, as shown in

Fig. 3, with little or no impact on total precipitation. This

is the strongest controlling factor on convective pre-

cipitation amount. The next strongest controlling factor

between convective and stable precipitation is the con-

vective trigger function parameter, delt1kf, which con-

trols the temperature difference required to initiate

convective precipitation. Again, there is a trade-off be-

tween convection and stable precipitation with little

impact on total precipitation; however, with reverse

correlations from prcpfac (i.e., higher delt1kf leads to

stronger convection as expected). In contrast, sfcflx, the

parameter controlling surface flux is positively corre-

lated with all forms of precipitation—convective, stable,

snow, and total—as it increases the amount of heat and

moisture available. The other two significant factors,

mixlen or PBL mixing length, and autocon2, an auto-

conversion factor for the microphysics are more ob-

scure. The PBLmixing length affects the transfer of heat

and moisture and the microphysics conversion factor

impacts the autoconversion of cloud water.

The possible existence of interactions complicates

both the understanding of the relationships, and what

one does with that knowledge. In such situations, it is

FIG. 8. As in Fig. 5, but for accumulated snow (snow).
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important to temper the results found here by another,

independent method. One such method is based on re-

gression. Specifically, for each day, and each param-

eter pair (x1, x2), a regressionmodel of the type y5 b01
b1x11 b2x21 b12x1x2, is developed, where y denotes the

forecast quantity of interest. The term b12 is a measure

of the interaction between the two parameters, and its

statistical significance can be tested via a t test (Draper

and Smith 1998). The distribution of the resulting p

values can then be used to assess statistical significance

across multiple days. Under the null hypothesis of no

interaction, the distribution of the p values must be

a uniform distribution between 0 and 1. Any deviation

from uniformity can then be interpreted as evidence for

rejecting the null hypothesis in favor of the alternative

that an interaction exists. FF12 igure 12 shows the distri-

bution of the p values when the forecast quantity is

convective precipitation. The interactions for whom the

p values are mostly below the a 5 0.05 line (dashed

horizontal line), cannot be uniform between 0 and 1, and

are therefore potential candidates for significant in-

teractions. According to the p values in Fig. 12, there is

one interaction that is statistically significant: ‘‘3, 7.’’.

Although the results are not shown here, when this

p-value-based approach is applied to the other forecast

quantities, no such significant interactions are found.

In short, the question of interactions is deserving of

further work.

Several other improvements to this work can bemade.

Here, regression models are used to estimate the con-

ditional expected values. More sophisticated models,

called Gaussian process regression models, have been

proposed for that purpose (Rougier 2008). It is possible

that such methods can better model the conditional

expected values, with fewer points in parameter space.

These models also allow for alternative ways of assess-

ing statistical significance, and so, are currently under

investigation.

FIG. 9. The expected value of convective precipitation (conv) as

a function of the 11 parameters (standardized to have zero mean

and one standard deviation). The thickest curve corresponds to

prcpfrac, and the next thickest curve corresponds to delt1KF—the

parameters found to be most influential on conv, based on the

variance-based method.

FIG. 10. A comparison of (left) daily variability and (right)

sampling variability in parameter space. The forecast quantity is

convective precipitation.

FIG. 11. A comparison of (left) LHS and (right) SRS. The forecast

quantity is convective precipitation.
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To gain a more complete understanding of what ef-

fects the forecast quantities, it is important to include

more parameters in the analysis. With 11 parameters

and 99 points in the experimental region, there has been

no indication of overfitting in the development of the

regression models. With more regression parameters,

the dimension of the experimental region should be in-

creased to avoid overfitting, but, at this time, it is unclear

howmuch. It will be useful to perform simulation studies

to obtain some sense of the relationship between the

necessary number of points in parameter space and the

number of parameters in the regression models.

Although the 36 days considered here span a signifi-

cant portion of a year, the range is not sufficiently large

to allow for a study of seasonal effects on the sensitivity

of the parameters. Work is currently under way to ex-

pand the range to one full year, and then to multiple

years.

The variance-based method used here involves only

one output (forecast parameter). Revisions of the

methodology allow for multiple outputs, simultaneously

(Fasso 2006; Oakley andO’Hagan 2004). That approach

will allow one to better model the effects and the in-

teractions, because in practice one often sets the values

of the model parameters while taking into account their

effect on multiple forecast quantities.

Finally, for this study COAMPS was run with a grid

spacing of 81 km. In future work, which will include the

above-mentioned extensions, the runs will be performed

at higher resolution. The computational demands will be

significantly larger, but not formidable. Currently, a run

of COAMPS for a single set of 11 parameter values re-

quires approximately 1min on an 8-CPU computer. For

99 points in the empirical region, and over a span of 36

days, the run requires about 2.5 days (99 3 36min) to

complete. Decreasing the grid spacing from 81 to 15 km

(i.e., a factor of 5 increase in resolution) will require 535
125 times longer. That length of time is unreasonably

long on an 8-node computer, but is only 2.5 days (2.5 3
8/1000) on a 1000-node supercomputer. Increasing the

number of days in the analysis can also be compensated

by taking them farther apart, which can actually be

beneficial because the data across the different days

will then be more independent. Given the feasibility of

such experiments, it may even be possible to include

‘‘resolution’’ as one of the parameters in the sensitivity

analysis.
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