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Abstract4

Sensitivity Analysis (SA) generally refers to an assessment of the sensitivity5

of the output(s) of some complex model with respect to changes in the input(s).6

Examples of inputs or outputs include initial state variables, parameters of a7

numerical model, or state variables at some future time. SA is useful for data as-8

similation, model tuning, calibration, and dimensionality reduction; and there9

exists a wide range of SA techniques for each. This paper discusses one special10

class of SA techniques, referred to as variance-based. As a first step in demon-11

strating the utility of the method in understanding the relationship between12

forecasts and parameters of complex numerical models, here the method is13

applied to the Lorenz ’63 model, and the results are compared with an adjoint-14

based approach to SA. The method has three major components: 1) analysis of15

variance, 2) emulation of computer data, and 3) experimental/sampling design.16

The role of these three topics in variance-based SA is addressed in generality.17

More specifically, the application to the Lorenz ‘63 model suggests that the Z18

state variable is most sensitive to the b and r parameters, and is mostly unaf-19

fected by the s parameter. There is also evidence for an interaction between the20

r and b parameters. It is shown that these conclusions are true for both simple21

random sampling and latin hypercube sampling, although the latter leads to22

slightly more precise estimates for some of the sensitivity measures.23
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1 Introduction24

In contemporary times it is commonplace to represent complex systems with nu-25

merical models. Examples include numerical weather prediction models (Richardson26

2007), ocean circulation models (Miller 2007), and hydrology models (Rushton 2003).27

All of these models generally consist of a system of partial differential equations28

which are numerically integrated, subject to boundary and initial conditions. Gen-29

erally, such complex models can be viewed as a “black box” with some number of30

inputs and outputs. Although the choice of the inputs and outputs depends on the31

specific problem at hand, this paper focuses on model parameters and forecast quan-32

tities, respectively. Numerical models often have a large number of parameters whose33

values are not unambiguously known or even knowable, and so, it is useful to know34

how the parameters effect the forecasts.35

Sensitivity Analysis (SA) is the name broadly associated with such questions,36

although it is performed for a variety of reasons, including variable/input selection,37

dimensionality reduction, data assimilation, and model tuning or calibration (Cacuci38

2003). These different applications of SA are not necessarily mutually exclusive, but39

this paper focuses on the former. Specifically, the focus here is on the extent to40

which the outputs are affected by the various inputs across the full range of input41

values. In statistics “The full range of input values” is called the experimental region,42

and the question of how to choose it is a topic of text books on experimental design43

(Douglas 2005). It is important in SA because the sensitivity of the outputs to the44
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inputs can depend on the experimental region. It is unfeasible to examine the full45

experimental region, and so, sampling that region is usually the practical alternative.46

Two sampling schemes commonly employed in SA are simple random sampling and47

systematic sampling, reviewed below.48

Given the long history of SA, there exists a wide range of methods for imple-49

menting it. One of the more intuitive is referred to as the “One-at-A-Time” (OAT)50

method (Saltelli et al. 2008, 2010). Generally, in an OAT analysis the inputs are51

varied one at a time, while all other inputs are held fixed at some value (e.g., at52

their respective mean), and the change in the output is monitored. However, if the53

number of inputs is large, the basic OAT approach samples only a small portion of54

the experimental region. This can be seen as follows: Consider three inputs whose55

values vary along the x, y, z Cartesian coordinates. Varying them one-at-a-time, will56

sample the points along the axes, but not at the corners of a cube centered at the57

origin. In three dimensions this is not a serious concern because one often assumes58

that the “black box” model is some relatively smooth surface, so that knowledge of59

its output values along the three axes is sufficient to define it uniquely. However, it60

is a geometric fact that a high-dimensional space consists mostly of corners (Jimenez61

and Landgrebe 1998; Scott 1992), and so the basic OAT severely under-samples the62

experimental region. There exists a variation on the basic OAT, proposed by Morris63

(1991), which avoids both of these problems, but it will not be discussed here.64

The taxonomy of SA methods is complex (Bolado-Lavin and Badea 2008), but65

one can divide them into two broad categories: local and global. Local methods yield66
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sensitivity results which are valid only in a small region of the experimental region.67

The basic OAT approach is a local method because its sensitivity results are reliable68

only in the vicinity of the fixed values assigned to the inputs. Adjoint methods are69

also local, because they generally rely on the notion of a derivative or Jacobian of the70

output with respect to an input (Errico 1997). By contrast, global methods allow an71

examination of sensitivities across the full experimental region. The main advantage72

of local methods is their speed and transparency, while the main advantage of global73

methods is their ability to assess the effect of large changes in the inputs.74

Although global methods themselves can be subdivided into finer categories, one75

class is based on a decomposition of the variance of the output(s) into terms corre-76

sponding to the different inputs and their interactions. In this way, such variance-77

based SA methods can assess the manner in which the uncertainty in an output is78

apportioned across the inputs, and across interactions between them. Variance-based79

methods are global in the sense that the sensitivity results do not pertain to any spe-80

cific value of the inputs; and they are multivariate in that they can assess individual81

inputs and their interactions. This generality of variance-based SA methods is the82

reason why it is the main focus of this work.83

Variance-based SA involves three ingredients. In the first, classical concepts from84

analysis of variance (ANOVA) are employed to define measures of sensitivity. The85

second ingredient involves estimation of conditional expectations in terms of which86

all of the sensitivity measures are written. The estimation is based on data obtained87

from running the numerical model for a sample of model parameters; methods of88
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experimental design are used for deciding what type of sample to take - the third89

ingredient. All three ingredients are discussed below. The next subsection provides90

brief reviews of a number of SA applications in the geosciences.1 It is followed by91

a section further describing the three ingredients of variance-based SA. Section 392

applies that methodology to the Lorenz ‘63 model, and compares the results with93

those obtained from an adjoint-based approach to SA. A summary of the conclusions94

and their discussion is presented in Section 4. The main goals of the paper are 1)95

to review and promote the use of variance-based SA methods, and 2) to apply the96

method to the Lorenz ’63 model both as a demonstration of the SA method, as well97

as gaining a better understanding of the model itself.98

1.1 Past Applications of SA99

Stein and Alpert (1993) discuss the limitations of OAT analysis in atmospheric nu-100

merical models. They show that difference maps do not show interactions between101

model parameters. For example, they examine the effect of topography and surface102

fluxes on rainfall, and show that the interaction between the two factors contributes103

more to rainfall than either of the factors alone.104

Alapaty, Raman, and Niyogi (1997) study the effect of five parameters on the105

boundary-layer structure. Although that work relies on an OAT approach, in a follow-106

up work Niyogi et al. (1999) extended the analysis by using ANOVA to assess the107

1For the reader more interested in the technical detail (as opposed to the historical detail), this

section may be skipped.
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simultaneous effect of the parameters on sensitivity measures.108

Murphy et al. (2004) perform an OAT analysis on 29 parameters. The values109

of the parameters are selected according to expert advice. The forecast quantities110

considered are the standard deviation (across ensemble) of temperature, precipitation,111

and pressure. In a similar climate study, Sanderson (2011) performs a comparison of112

two climate models in terms of the distribution of the values of climate sensitivity (i.e.,113

the change in mean temperature resulting from a doubling of CO2 concentration),114

with respect to four parameters. In one model they consider four parameters, each115

sampled at three levels; in statistics, such a design is called a 34 factorial design.116

Mishra, Cherkauer, and Bowling (2010) examine the effect of 6 parameters on117

stream flow. They perform an OAT analysis, followed by a 28 factorial analysis.118

The idea of sampling different model parameters and/or different initial condi-119

tions arises also in ensemble prediction systems, where the main focus is on sampling120

the initial conditions so as to maximize the variance (across the ensemble) of the fore-121

casts. There exist different methods for generating these samples. Some are designed122

to optimize the manner in which perturbations grow in time; methods based on singu-123

lar and bred vectors belong to that class. Magnusson, Leutbecher, and Källén (2008)124

compare these two methods for sampling initial perturbations. For the purpose of125

sampling model parameters, however, one often considers random or systematic sam-126

pling techniques. Hacker et al. (2011), for example, use a variant of the latter, called127

latin hypercube sampling, to set the values of four model parameters in a mesoscale128
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model. They also perform two types of SA; in the first, they examine the effect of129

each of the four parameters on the mean absolute difference between a forecast where130

the model parameter is set to a minimum value and another forecast where the model131

parameter is set to a maximum value. In other words, they follow an OAT, 24 fac-132

torial design. They also study the effect of the model parameters on the mean and133

variance of the forecasts across the spatial domain.134

Many of the basic ideas in SA arise in the calibration of ensembles, as well. For135

example, Golaz et al. (2007) consider 10 parameters in a single-column model param-136

eterizing boundary layer clouds. They take simple random samples from a uniform137

distribution centered on specified initial values of the parameters, and then optimize138

the parameters by minimizing a squared-norm cost function. They highlight how such139

an analysis can help in identifying structural errors in the model. Although similar140

to SA, this type of analysis is different both in the ultimate goal of the analysis and141

in the technical implementation. As an example of the latter, note that calibration142

requires a cost function comparing model output with observations, but SA does not143

require observations at all.144

The impact of observations can also be assessed through SA methods (Torn and145

Hakim 2008). Hakim and Torn (2008) propose a method, called ensemble synoptic146

analysis, which offers yet another means of performing SA suitable for assessing sen-147

sitivity to initial conditions. Gombos and Hansen (2008) apply the ensemble synoptic148

analysis method to potential vorticity forecasts from Weather Research Forecasting149

(WRF) Model, and compare the results of that statistical technique with those of a150
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dynamic approach due to Davis and Emanuel (1991). Ancell and Hakim (2007) com-151

pare the ensemble-approach to SA with the more traditional adjoint-based approach,152

and show that the two methods are equivalent when the initial conditions are spatially153

uncorrelated. Beyond this simple comparison, which is proven analytically, further154

comparisons are complex, and so the two methods have their respective advantages155

and disadvantages.156

A variance-based SA of a numerical model in the geosciences is performed by Zhao157

and Tiede (2011). The numerical model examined there involves five parameters, and158

the response is changes in gravity measured at the Earth’s surface in the vicinity of159

a volcano; the model parameters are randomly sampled from a uniform distribution.160

The “data” generated by all such studies are called computer data, and are further161

discussed in Section 2.3. One of the earliest general treatments of computer data, at162

least in meteorological circles, dates back to 1993 (Bowman, Sacks, and Chang 1993).163

That work demonstrates the importance of proper sampling in assessing the effects164

of five parameters in a general circulation model.165

2 Variance-Based SA166

The specific formulation of variance-based SA presented here follows that of Oakley167

and O’Hagan (2003). The foundations of the variance-based approach are based on168

two mathematical facts. The first is the variance-decomposition formula, also known169
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as the law of total variance (Weiss 2005, p. 385):170

V [y] = V [E[y|xi] ] + E[V [y|xi] ] , (1)171

where E[.] and V [.] denote expected value and variance, respectively. E[y|xi] and172

V [y|xi] denote the conditional expected value and conditional variance, respectively,173

of the output, given the inputs xi; here, i refers to the ith input. Intuitively, this174

decomposition states that the total variance in y, V [y], can be written as the sum175

of two terms, one measuring the variance “between” the conditional means, and the176

other measuring the mean of the conditional (“within”) variances.177

The second fact is often known as the High-Dimensional Model Representation178

(Santner, Williams, and Notz 2003; Sobol’ 1993); it states that any function of the179

type, y = η(x1, x2, ..., xn), can be decomposed as follows:180

y = η(x1, x2, ..., xn) = E[y] +
n∑
i

zi(xi) +
∑
i<j

zij(xi, xj) + ... , (2)181

where182

zi(xi) = E[y|xi]− E[y] , (3)183

zij(xi, xj) = E[y|xi, xj]− E[y|xi]− E[y|xj] + E[y] . (4)184

The zi(xi) are referred to as main effects, and the zij(xi, xj) are called the first-order185

interactions. The ... indicates that there exist higher-order interaction terms in the186

expansion, but here they are assumed to be relatively small. The approximation in187

(2) is adequate for a wide range of functions, but has been well-studied for piece-wise188

continuous functions (Chowdhury, Rao, Prasad 2008). Intuitively, η represents the189
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function mapping the model parameters to the forecast quantity of interest. It is190

important to point out that the computation of the expected values and variances191

requires the joint probability distribution of all the inputs. As a result, even a main192

effect computation for a given input generally involves the other inputs.193

2.1 Measures of Sensitivity194

The measure of importance for an input is a user-dependent quantity, but a few com-195

mon measures natural to the formulation of the variance-based methods are as follows196

(Oakley and O’Hagan 2004). One natural measure gauges the expected reduction in197

the variance of the output, given an input: E[V [y]−V [y|xi] ]. This measure, denoted198

Vi, is equal to V [y]− E[V [y|xi] ], which according to (1) can be written as199

Vi = V [E[y|xi] ] . (5)200

Similarly, the expected reduction in the variance of the output, given two inputs, xi201

and xj, is202

Vi+j = V [E[y|xi, xj]] . (6)203

The quantity Vi+j measures the sensitivity of the output with respect to both xi and204

xj. From (2)-(6) it follows that Vi+j = Vi +Vj +V [zij(xi, xj)], and so, a measure that205

gauges the level of interaction between xi and xj (at least when zi(xi) is independent206

of zj(xj)) can be defined as207

Vij = V [zij(xi, xj)] . (7)208

Another useful quantity measures the uncertainty remaining in the output, given209
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all inputs, except xi. For example,210

VT1 = V [y]− V [E[y|x2, x3, ...]] , (8)

measures the remaining/unexplained variance in y after all inputs have been fixed,211

except x1. Traditionally, the Vi and VT i measures are converted to proportions, as212

follows:213

Si = Vi/V [y] and ST i = VT i/V [y] , (9)214

where Si and ST i are called the main effect index, and the total effect index, respec-215

tively. Although they measure different facets of the importance of the ith input,216

they do not capture interactions between the inputs. Therefore, it is important to217

supplement Si and ST i with Vi+j or Vij for a more complete assessment of sensitivity.218

Table 1 provides a summary of these measures and their meaning.219

In special cases, these sensitivity measures can be related to other, common220

measures of sensitivity. For example, it can be shown that for y = η(x1, x2) =221

β0 + β1 x1 + β2 x2, if x1 and x2 are independent and centered (i.e., with E[xi] = 0),222

then Vi = β2
i V [xi], and Si = β2

i V [xi]/V [y]. In other words, Vi and Si are directly223

related to the “regression” coefficients βi. Other sensitivity measures have more com-224

plex relations to the βi parameters (Marzban 2011).225

2.2 Estimation of E[output|input]226

All of the measures in Table 1 can be computed from the zi and zij defined in (3)227

and (4), which are written in terms of conditional expected values. A great deal228
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of the work in variance-based SA methods is focused on efficient and accurate ways229

for estimating these conditional expectations from data. The data themselves are230

generated by evaluating the function η(.) for some set of xi values. The choice of the231

xi values is a complex issue belonging to the realm of experimental design, described232

in the next section.233

The methods for estimating the conditional expectations are varied, but they234

can be broadly divided into Monte Carlo methods (Sobol’ 1993; Cukier et al. 1973;235

Saltelli et al. 2008, 2010), and methods based on emulation, or meta models (Dusby236

2008; Oakley and O’Hagan 2004; Rougier 2008; Rougier et al. 2008). In the former,237

the conditional expected values are expressed as their defining integral form, which238

are then evaluated using Monte Carlo techniques. The latter methods aim to develop239

a statistical model that approximates y = η(.). The resulting statistical model is said240

to emulate the “black box” model η(.). The emulator is then employed to estimate241

the conditional expectations.242

The development of an emulator is a complex and sophisticated procedure. Oak-243

ley and O’Hagan (2004) develop a Gaussian Process emulator, whose mathematics244

is similar to Kriging (Chaloner and Verdinelli 1995; Sacks, Schiller, and Welch 1989;245

Sacks, et al. 1989; Welch et al. 1992). More recently, these methods have been246

extended to allow multiple outputs (Rougier 2008; Rougier et al. 2008).247

The estimation method adopted in this paper is a simple emulation approach248

based on cubic polynomial regression. Recall that a least-squares fit to data of the249
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form (y, x1, x2, ...) has the property that the fitted value estimates the conditional250

expected value of the response y, given the predictors x1, x2, ... (Bishop 1996; pages251

201-202). Specifically, here, E[y|x1] is estimated by fitting a cubic polynomial through252

data on x1 and y. Similarly for E[y|x2], and E[y|x1, x2], etc.253

2.3 Experimental Design254

Experiments involving numerical models generate data which have no experimental255

error. In other words, a unique set of values for the inputs will always produce the256

same output. Such data are called computer data, and experiments involving com-257

puter data are often called in silico - in contrast to in vitro or in vivo experiments258

performed, respectively, in a laboratory tube or in a living body. Again, the distin-259

guishing characteristic of computer experiments is the absence of experimental error260

(Fang, Li, and Sudjianto 2006; Santner, Williams, and Notz 2003). Consequently,261

the analysis of computer data is somewhat different from that of “real” data. The262

framework for analyzing computer data is well-established (Santer et al. 2003).263

In a computer experiment all of the variability of the response is due to variability264

in the factors. In other words, for computer data one has V [y|x1, x2, ..., xn] = 0,265

where n is the number of inputs. The variability in y that is utilized to define all the266

sensitivity measures in Table 1 originates from the variability of the inputs that are267

not fixed. Either way, there is variability in y even for computer data, and so care268

must be taken in sampling, because the precision of the sensitivity measures depends269
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on the choice of the sampling scheme.270

Discretizing the inputs on a grid is a form of sampling, but it is inefficient. For271

example, consider a 2-dimensional grid discretizing the space spanned by two inputs.272

Then, any two grid points have at least one input in common. As such, the empirical273

region is not adequately sampled. An alternative to a grid is random sampling of274

the experimental region. There exists a wide variety of sampling techniques (Douglas275

2005), but only two are considered here: Simple Random Sampling (SRS) and Latin276

Hypercube Sampling (LHS). The latter is a systematic sampling method which belongs277

to a class of sampling techniques called space-filling. The pros and cons of all of these278

sampling methods have been thoroughly examined (Cioppa and Lucas 2007; Fang,279

Li, and Sudjianto 2006; Santner, Williams, and Notz 2003; Urban and Flicker 2010).280

SRS has the desirable property of leading to the most precise estimate of the mean,281

if the population is homogeneous. For example, in sampling a continuous quantity282

such as height, if the population of heights has no clusters that distinguish different283

height characteristics, then a mean height computed from an SRS has the smallest284

variance across multiple samples (if multiple samples were taken). By contrast, when285

the population is not homogeneous, LHS is designed to yield no-less precise estimates286

than SRS.2 The reason for this difference between the two sampling schemes is that287

SRS has a tendency to generate clusters. This clustering of data is not of concern288

when the population is homogeneous, but otherwise results in suboptimal estimates.289

2It can be shown that LHS cannot lead to less precise estimates than SRS. In fact, if the function

η(.) is monotonic, then this can be proved analytically (McKay, Beckman, and Conover 1979).
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LHS, however, is designed to scatter the sample across the full experimental region.290

This latest property is the reason why LHS is said to be space filling (Cioppa and291

Lucas 2007; Fang, Li, and Sudjianto 2006; Santner, Williams, and Notz 2003).292

Figure 1 shows an example of a SRS (open circles) and a LHS (filled circles) taken293

from a 2-dimensional experimental region. This specific realization is uncharacteristic294

in that the SRS circles clearly cluster together, while the LHS circles do not. However,295

it serves to demonstrate that SRS may lead to clusters, but LHS cannot. Indeed, by296

design, no two cases in the LHS have the same values of x1 and x2.297

3 Lorenz ’63298

Marzban (2011) considers a few examples which can be solved analytically. One299

example in which the function representing the “black box” model is not available in300

analytic form is the Lorenz ‘63 model (Lorenz 1963). It is defined as301

dX/dt = −s(X − Y ), (10)302

dY/dt = rX − Y −XZ,303

dZ/dt = XY − bZ,304

where the model parameters are s (the Prandtl number), r (the Raleigh number),305

and b, the latter being a function of the wavenumber. The state space variables306

X, Y, and Z measure the intensity of convective motion, and horizontal and vertical307

temperature variation, respectively (Bellomo and Preziosi 1995).308
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In terms of the aforementioned “black box,” the inputs are the model parameters309

s, r, and b. In this paper, the outputs are not the state space variables X, Y, and Z,310

but rather the mean value of these quantities over a 20-time-step forward integration311

of the Lorenz equations. These means are denoted Xmean, Ymean, and Zmean.312

In order to obtain a visual sense of the relationship between the outputs and the313

inputs, 50 equally-spaced values are selected for each parameter, the Lorenz equations314

are integrated forward in time steps of 0.02, and Xmean, Ymean, Zmean are computed.315

The empirical region (i.e., range of parameters) includes the default values, and is316

selected to yield a reasonably rich and complex relationship between the outputs and317

the inputs. That relationship (for only Zmean) is shown in Figure 2.318

Although all three parameters are varied, the various panels in this figure show319

different cross-sections of the relationship. The top/left panel shows Zmean, in differ-320

ent shades of gray (white = low, black = high), versus s and r, with the b-parameter321

set to its default value of 8/3. The top/right panel shows a different perspective of322

the same relationship; the r parameter is shown along the x-axis, and so, the resulting323

scatter in the figure corresponds to different values of the s parameter. It can be seen324

that Zmean is mostly monotonically increasing with s and r, with a slight nonlinearity325

in the extremes where s and r are both either low, or high.326

The middle panels show the dependence of Zmean on s and b, with r set to its327

default value of 28. The behavior here is mostly monotonically decreasing with b;328

in fact, that dependence visually overwhelms the dependence on s noted in the top329
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panels. The bottom panels show Zmean versus r and b, with s set to its default330

value of 10. This time, the relationship is monotonically decreasing with b, but with331

significant variability due to r.332

In short, a wide range of behavior can be seen over the specific range of parameters333

selected. Beyond this empirical region the relationships are more complex, even334

consisting of discontinuities. Such complexity is not an obstacle in variance-based335

SA methods, because the emulators often used are highly nonlinear statistical models336

capable of modeling a wide range of functional behavior. Here, for simplicity, the337

model employed to emulate the relationships shown in Figure 2 is a cubic polynomial;338

there is no evidence from Figure 2 to suggest a more complex model.339

The “data” shown in Figure 2 pertain to 503 points in parameter space because340

50 different values of each parameter are selected. Such a large sample is possible here341

only because the Lorentz ‘63 model is relatively simple. A large sample is chosen only342

to lead to graphs that are visually informative, such as those in Figure 2. The data343

for performing SA are not obtained by systematically incrementing all the inputs,344

for that would be computationally prohibitive for most realistic models. Thus, even345

though the Lorenz model is sufficiently simple to allow a brute-force approach, the346

SA is performed on random samples (according to SRS and LHS) of size 50 taken347

from the experimental region spanned by the parameters s, r, and b.348

In order to compare the two sampling schemes, 100 samples are taken. The result-349

ing sampling variability of all the sensitivity measures is displayed through boxplots.350
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It is important to point out that in a realistic application of the variance-based SA,351

this step of taking multiple samples is unnecessary. The only reason it is done here352

is to allow a comparison of the two sampling schemes.353

There exists another source of variability in the Lorenz model, namely initial354

conditions. Here, for simplicity, and remaining focused on the illustration of the355

variance-based SA method, every time a sample is taken from the experimental region,356

the initial conditions are fixed at their default values, (X, Y, Z) = (−14,−13, 47). A357

similar analysis but where the initial conditions are also randomly selected has been358

performed. The results are not shown here, because the only difference is “larger”359

boxplots resulting from the additional variability due to initial conditions.360

Figure 3 shows the sensitivity measures for Zmean; results for Xmean and Ymean are361

not shown here. The boxplots summarize the corresponding distributions resulting362

from 100 trials (i.e., 100 different samples of size 50 taken from the empirical region).363

The wide/white boxplots correspond to SRS, and the narrow/gray boxplots are for364

LHS. Comparing the two boxplots across all the panels in Figure 3, it is clear that365

LHS yields no-less precise estimates (than SRS) for all of the sensitivity measures;366

this is evident in the fact that the gray boxplots are generally “shorter” than the367

white boxplots for many of the sensitivity measures.368

The top/left panel shows the distribution of the Vi measures (5) for s, r, and b.369

Evidently, Zmean is most sensitively dependent on the b parameter, followed closely by370

the r parameter. The parameter s appears to have no effect at all. However, it would371
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be a mistake to dismiss s as an important input, because it may be important only372

in the presence of the other parameters. The measures Vs+r, Vs+b, Vr+b (6) must then373

be consulted; they are shown in the top/right panel. Comparing this panel with the374

top/left panel, it is difficult to determine if s is indeed useless, because, for example375

Vs+r (in top/right panel) appears to be comparable with Vs + Vr (in top/left panel).376

In order to better isolate the effect of s, sensitivity to interaction terms Vsr, Vsb, Vrb377

(7) may be examined; they are shown in the left/middle panel. There appears to be378

evidence for a weak interaction between r and b, but it is not clear if s interacts with379

r or with b.3 The remaining panels show the “total” sensitivity measures (8, 9) and380

confirm that that Zmean is most sensitively dependent on b and r. These conclusions381

are the same regardless of the sampling scheme.382

3.1 The Adjoint SA383

It is useful to compare the above findings to the results of a more traditional method384

such as the adjoint method. Hall (1986) has developed a framework wherein the385

sensitivity of the mean of a state variable, with respect to both initial conditions and386

model parameters, can be obtained using the adjoint method. Application of that387

approach to the Lorenz ‘63 model (with fixed initial conditions) yields388

δZmean =

∫ T

0

[ vx(Y −X) δs+ vyX δr + vzZ δb ] dt (11)389

3To settle that question, one would require knowledge of the distribution of the sensitivity mea-

sures (i.e., the boxplots) under the null hypothesis of no interaction. See the discussion, below.
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where X, Y, Z satisfy (10), δs, δr, δb are perturbations to the model parameters, and390

δZmean is the corresponding change in the mean (over time T ) of Z.4 The quantities391

vx, vy, vz are components of a column vector ~v which must be a solution to392

N∗~v =
1

T


0

0

1

 , ~v(t = T ) = ~0 . (12)393

where N∗ is the adjoint of the tangent linear model corresponding to Lorenz ‘63. The394

details leading to these results are not shown here, but similar expressions can be395

derived for δXmean and δYmean. The coefficients of δs, δr, δb in (11) can be thought396

of as measures of sensitivity of Zmean with respect to parameter perturbations. Note397

that these coefficients are functions of time T .398

Figure 4 shows the logarithm of these sensitivity measures as a function of T ,399

although only T = 20 is relevant for comparison with the variance-based sensitivity400

results. The three line thicknesses - from thin to thick - correspond to sensitivity with401

respect to δs, δr, and δb, respectively. It can be seen that the curve corresponding402

to δb is consistently above the δr curve, which in turn is higher than the δs curve.403

This implies that δZmean is most sensitive to δb, followed by δr, and then δs. And,404

of course, these results are consistent with the results of the variance-based method.405

A more qualitative comparison of the two methods is provided in the next section.406

4Technically, Hall’s method gives the mean of δZ; but under general conditions that quantity is

equal to the δZmean.
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4 Conclusions and Discussion407

A variance-based method for sensitivity analysis is reviewed and demonstrated on408

the Lorenz ‘63 model. The method relies heavily on ideas from analysis of variance,409

regression modeling, and experimental design (Fang, Li, and Sudjianto 2006; Santner,410

Williams, and Notz 2003). It is found that the mean of the Z state variable is most411

sensitively dependent on the b parameter. The sensitivity on the r parameter is412

comparable, but the s parameter appears to have no effect on Zmean at all. There is413

also indication of a weak interaction between the r and b parameters. These findings414

are valid for simple random and latin hypercube samples. It is also seen that the415

latter scheme leads to more precise estimates for some sensitivity measures, but not416

for all. The results are generally consistent with an adjoint sensitivity analysis, in so417

far as the two methods can be compared.418

A qualitative comparison of the variance-based and the adjoint method is as419

follows: The adjoint method has the desirable feature that an analytic expression420

can be written for the sensitivity (11). However, it has the undesirable property421

that the sensitivity analysis refers explicitly to a given reference trajectory, i.e., the422

X, Y, Z appearing in (11). As a result, δs, δr, δb are all perturbations about a reference423

parameter set; the variance-based method does not have this limitation. Also, the424

variance-based method naturally allows for an estimate of the uncertainty in the425

sensitivity measures, e.g., through the boxplots shown in Figure 3; the adjoint-based426

result (11) does not. On the other hand, in spite of the flexibility of most emulators (in427
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essentially estimating a response surface) the estimation may simply be wrong. This428

introduces another source of variability (sometimes called computational uncertainty)429

in the variance-based method, which does not plague the adjoint approach. The430

adjoint method of Hall (1986) is naturally suited to estimate δZmean, but it is not431

clear how to extend the method to allow the estimation of other quantities of interest,432

e.g., the change in the maximum of Z, i.e., δZmax. Finally, unlike the variance-based433

method, the adjoint method in its current form does not allow the estimation of434

interaction terms; however, that generalization is possible and is currently under435

investigation. Also underway, are a more thorough assessment of the sensitivity with436

respect to initial conditions, and an application of variance-based SA to a mature437

numerical weather prediction model (i.e., COAMPS R©)5.438

Here it has been sufficient to emulate the conditional expectations with a cubic439

polynomial regression. The main reason (for the sufficiency) is that the number of440

cases generated for “training” the regression model is practically unbounded, and441

so there is little or no chance of overfitting. In more realistic examples, where 1)442

the nonlinearity of the η(.) model may require more nonlinear functions, and 2) the443

η(.) model is expensive to run, alternative emulators should be used. Storlie et al444

(2009) compare a wide range of emulation methods; one class of emulators which445

has gained recent popularity is called gaussian processes regression (Chaloner and446

Verdinelli 1995; Hsieh 2009; Rougier 2008; Rougier et al. 2008; Sacks, Schiller, and447

Welch 1989; Sacks, et al. 1989; Welch et al. 1992). These are sophisticated models,448

5COAMPS is a registered trademark of the Naval Research Laboratory.
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whose training requires more effort than polynomial regression, which is the reason449

why they are not used here.450

The analysis performed here has involved only one of the outputs (Zmean), and the451

approach can be applied to each output, separately; however, others have proposed452

multivariate methods where any covariance structure existing across the outputs may453

also be taken into account (Fasso 2006; Oakley and O’Hagan 2004). This approach454

will be examined in the context of ongoing work with COAMPS R©,455

Here, it has been sufficient to compare the boxplots of the sensitivity measures,456

representing sampling variability, only visually. However, a more rigorous treatment457

will be required if one desires to objectively assess the statistical significance of the458

results. To that end, it will be necessary to compute/construct the sampling dis-459

tribution of the sensitivity measures under the null hypothesis of no effect and no460

interaction. That work is also currently under investigation.461
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Figure Captions

Figure 1. A SRS (open circles) and a LHS (filled circles). Note that the former is594

clustered, while the latter “fills” the space.595

Figure 2. The dependence of Zmean in the Lorenz ’63 model on the parameters s, r,596

and b. The panels in the left column show Zmean, in different shades of gray (white597

= low, black = high), versus s and r (top), s and b (middle), and r and b (bottom).598

In each panel, the parameter not shown is set to its default value. The right panels599

show the same relationships but on 2d scatterplots. See text for explanation.600

Figure 3. Variance-based sensitivity measures for the Lorenz ’63 model. The box-601

plots show variability due to sampling variability in the experimental region. The602

wide/white (narrow/gray) boxplots correspond to SRS (LHS).603

Figure 4. Sensitivity measures for the Lorenz ’63 model, according to the adjoint604

method. The thinnest curve gives the sensitivity with respect to s. while the increas-605

ingly thicker curves are associated with r and b parameters, respectively.606
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Figure 1. A SRS (open circles) and a LHS (filled circles). Note that the former is607

clustered, while the latter “fills” the space.608
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Figure 2. The dependence of Zmean in the Lorenz ’63 model on the parameters s, r,609

and b. The panels in the left column show Zmean, in different shades of gray (white610

= low, black = high), versus s and r (top), s and b (middle), and r and b (bottom).611

In each panel, the parameter not shown is set to its default value. The right panels612

show the same relationships but on 2d scatterplots. See text for explanation.613
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Figure 3. Variance-based sensitivity measures for the Lorenz ’63 model. The box-614

plots show variability due to sampling variability in the experimental region. The615

wide/white (narrow/gray) boxplots correspond to SRS (LHS).616
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Figure 4. Sensitivity measures for the Lorenz ’63 model, according to the adjoint617

method. The thinnest curve gives the sensitivity with respect to s. while the increas-618

ingly thicker curves are associated with r and b parameters, respectively.619
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Sensitivity measure Meaning

Vi = V [E[y|xi] ] Reduction in uncertainty of y, given xi

Vi+j = V [E[y|xi, xj]] Reduction in uncertainty of y, given xi and xj

Vij = V [zij(xi, xj)] Component of Vi+j due to interaction between xi and xj

VT1 = V [y]− V [E[y|x2, x3, ...]] Uncertainty in y remaining, given everything except x1

Si = Vi/V [y] Main effect index of xi

ST i = VT i/V [y] Total effect index of xi

Table 1. The sensitivity measures examined here.620
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