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Abstract

The Receiver Operating Characteristic (ROC) curve is a two dimensional

measure of classification performance. The area under the ROC curve (AUC) is

a scalar measure gauging one facet of performance. In this note, five idealized

models are utilized to relate the shape of the ROC curve, and the area under

it, to features of the underlying distribution of forecasts. This allows for an

interpretation of the former in terms of the latter. The analysis is pedagogical

in that many of the findings are already known in more general (and more

realistic) settings; however, the simplicity of the models considered here allows

for a clear exposition of the relation. For example, although in general there are

many reasons for an asymmetric ROC curve, the models considered here clearly

illustrate that an asymmetry in the ROC curve can be attributed to unequal

widths of the distributions. Furthermore, it is shown that AUC discriminates

well between “good” and “bad” models, but not between “good” models.
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1 Introduction

Consider the problem of assessing the quality of forecasts produced for binary obser-

vations (here labeled 0 and 1). The forecast quantity may be a continuous quantity

ranging from−∞ to +∞, or it may be a probability, ranging from 0 to 1. It was shown

by Murphy and Winkler (1987, 1992) that this problem is best cast into a framework

based on the joint probability distribution of the forecasts and observations. Figure 1

depicts the general situation, where L0 and L1 are the likelihoods for the two classes.

In other words, Li(x) is the probability of the forecast x, given that the observation

is from the ith class.1 This figure illustrates an example of what Murphy and Winkler

call a discrimination diagram. There, it was shown that the quality of forecasts can be

assessed with complete generality in terms of several such diagrams; other diagrams

gauge different facets of that quality, e.g. refinement, resolution, reliability, etc.

Meteorologists ((Harvey et al. 1992; Mason 1982, Mason and Graham 1999;

Stephenson 2000, Wilks 2001) have also become interested in a procedure heavily

utilized in medical circles (Dorfman et al. 1969, 1997; Metz, Herman, and Shen 1998;

Shapiro 1999; Zhou, McClish, and Obuchowski 2002; Zou 2001). The procedure is

based on the Receiver Operating Characteristic (ROC) curve. In its simplest form it

is a parametric plot of the hit rate (or probability of detection) vs. the false alarm

rate, as a decision threshold is varied across the full range of a continuous forecast

quantity. The diagonal line corresponds to random forecasts, and the amount of

concavity is taken to be a measure of performance. The area under the ROC curve

(AUC) is often taken as a scalar measure (Hanley and McNeil, 1982). An AUC of 0.5

reflects random forecasts, while AUC=1 implies perfect forecasts. It has also been

shown by Mylne (1999) and Richardson (2000, 2001) that AUC is closely related to

the economic value of a forecast system.

The hit rate and the false alarm rate can be computed from the likelihoods:

H =
∫ ∞

t
L1(x) dx , F =

∫ ∞
t

L0(x) dx , (1)

where t is the decision threshold. The upper limit of the integral corresponds to the

maximum allowed value of x. For probabilistic forecasts, that limit is 1.

1For a given data set, a normalized histogram of x is the best of way of visualizing the likelihood.
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The ROC framework is somewhat different from the Murphy-Winkler framework.

For example, for probabilistic forecasts the Murphy/Winkler framework does not re-

quire, and indeed discourages, the reduction of the forecasts into categorical. The

ROC analysis, by contrast, is based on the contingency table, and therefore, requires

the introduction of a decision threshold for the purpose of reducing the continuous

forecasts into binary forecasts. Of course, the introduction of a threshold does not

imply that ROC analysis is in any way inferior to the Murphy/Winkler framework;

it is simply another method of assessing performance, with an emphasis on different

facets of performance. The Murphy-Winkler framework is more suitable for compar-

ing different sets of forecasts (e.g., from two forecasters), while the explicit presence

of a decision threshold in ROC analysis lends itself to the situation where a decision

must be made, or action must be taken, in response to forecasts.

In this note, a number of questions are addressed regarding the shape of ROC

curves. A few examples are provided to motivate the questions, and five toy models are

utilized to answer the questions. The toy models, although somewhat unrealistic, are

designed to be progressively better approximations to the general problem depicted

in Figure 1. The primary aim of this study is to introduce an awareness of the

connections between the Murphy-Winkler framework and ROC analysis. As such,

the results reported here are specific to the toy models considered, and are unlikely to

be generally true. Although one model - based on gaussians - is likely to be generally

valid, all the considered examples are sufficiently flexible to allow for a number of

ROC behaviors observed in realistic situations. The simplicity of the models offers a

transparent environment wherein observed ROC behaviors can be explained in terms

of more basic quantities, namely the parameters of the class-conditional distribution

of forecasts (i.e., the likelihoods).

Fig. 2a displays 16 ROC curves representing different levels of performance.

These curves gauge the performance of a markov chain model for forecasting tornadic

activity in 4 different regions of the U.S. during 4 seasons (Drton, et al., 2003). The

behavior of these curves is canonical in that they do what they are expected to. They

all begin from the point (0,0) and end at (1,1). But note the high degree of symmetry

about the diagonal(s). Fig. 2b, displays another set of 16 ROC curves, this time
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from a statistical model for predicting hail size (Marzban and Witt 2001). Although,

these curves are not pathological in any sense, they do display a few features that are

common to many ROC curves. The lowest performing models have symmetric ROC

curves, but the mid-range models begin to loose that symmetry. A natural question

is if this asymmetry can be explained in terms of the underlying distributions?

Another feature that often emerges is the extensive overlap of the ROC curve

with one (or two) of the axes of the diagram. In Fig. 2b, this can be seen in the most

concave curves (i.e., corresponding to the best-performing models). These yield ROC

curves that overlap the top axis for all false alarm rates higher than 0.4. What is the

explanation for this type of overlap? And what about an overlap with the y-axis?

Another type of asymmetry (not shown here) arises when the ROC curve cross

the diagonal at some (usually one) point. What causes this type of cross-over?

Many users of ROC curves observe that in dealing with a wide range of forecasts

in different situations, most forecasts appear to lead to highly concave ROC curves,

or equivalently high AUC values. AUC values of, say 0.9995, are not uncommon.

Fig. 2c displays 8 sets of ROC curves with extreme concavity. These are related

to a neural network developed for the prediction of ceiling and visibility (Marzban,

Leyton, Colman, 2003). The forecasts underlying the curves have different forecast

characteristics (in terms of the various attributes of probabilistic forecasts computed

within the Murphy-Winkler framework), yet they all lead to very concave ROC curves.

The AUC values for these curves vary from 0.990 to 0.996. Why are these AUC values

exceedingly near 1? Is it because the forecasts are of extraordinary quality? Or is it

an artifact of AUC itself? If the former is true, then a histogram of all AUC values

would be right-peaked (or show a heavy tail to the left). This is difficult to test,

because the necessary data would be difficult to compile. On the other hand, if the

culprit is the measure itself, then testing that hypothesis would be unnecessary, for an

explanation would then be at hand. And what sort of artifact would lead to near-one

AUC values?

As mentioned above, although the two approaches have different emphasis, they

are related. After all, the quantities from which an ROC curve is derived - hit rate and
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false alarm rate - are areas under the conditional distributions, above some decision

threshold. Moreover, although the computation of ROC curves does not require

knowledge of these distributions, an assessment of the statistical significance of ROC

curves does (Dorfman et al, 1969, Hanley and McNiel, 1982; Stephenson 200). For

example, in order to compute standard errors for ROC or AUC (in a parametric

approach) one makes some assumptions regarding these underlying distributions. It

is natural, then, to utilize the connection between the ROC curve and the underlying

distributions to answer the above questions. The answers, then, offer a means of

interpreting ROC curves at a more fundamental level.

In summary, here, several toy models are utilized to relate some characteristic

features of ROC curves with features of the underlying distributions. As such, the

shape of the ROC curve can be interpreted or “explained.” Knowledge of the un-

derlying distributions can guide the development of better forecasts. AUC is also

examined within the toy models. It is important to emphasize that the distributions

examined here are toy-models and mostly of pedagogical value. The five distribu-

tions considered are shown in Figures 3a-7a. They are referred to as 1) Uniform, 2)

Triangular with unconstrained support, 3) Gaussian, 4) Triangular with constrained

support, and 5) Beta distributions. The first three are appropriate for cases where

the forecast quantity varies over the real line from −∞ to +∞, while the last two

apply to probabilistic forecasts.

2 Uniform Distribution

A generic situation involving forecasts with uniform distributions is shown in Fig.

3a. There are four parameters involved - two means, c0 and c1, and two half-widths,

w0 and w1.
2 Without loss of generality, it is assumed that c1 ≥ c0. It is then

straightforward to show that the false alarm rate and the hit rate are given by

F =
c0 + w0 − t

2w0

, H =
c1 + w1 − t

2w1

, (2)

2Throughout this paper, the symbols c and w refer to measures of central tendency and half-

width, respectively, of the respective distribution. For the case of the gaussian, they coincide with

the mean and the standard deviation of the distribution.
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where t is the threshold above (below) which a case is classified into class 1 (0).3

The equation for the ROC curve follows immediately from (2):

H =
w0

w1

F +
δc + δw

2w1

, (3)

where δc = c1 − c0 and δw = w1 − w0. Fig. 3b displays the situation. It can be seen

that the ROC curve consists of three line segments, with the equation for the middle

segment given by (3).

Several observations can be made. First, (3) implies that two models with different

means and widths can yield the same ROC curve if they have the same slope and

intercept (see Fig. 3b). As such, the ROC curve does not uniquely specify the

underlying parameters. In other words, there is a family of underlying distributions

that give rise to the same ROC curve. This is a known fact even for more general

distributions (Zhou, McClish, Obuchowski 2002).

Second, the length of the vertical segment overlapping the y-axis is determined

by two quantities, δc and w0/w1. This is sensible since the goodness of the underlying

model is determined by both quantities. By contrast, the slope of the middle segment

depends only on the ratio of the half-widths (and not δc). As such, the inequality of

w0 and w1 reflects itself as an asymmetric ROC curve.

Given the analytic expression for the ROC curve (3), it is then possible to compute

the area under the curve:4

AUC = 1− 1

8
(

∆
√

w0w1

)2 (4)

where

∆ = δc− (w0 + w1). (5)

Since δc ≤ w0 + w1 for the arrangement displayed in Fig. 3a, it can be seen that

increasing δc leads to better performance. Furthermore, decreasing w0 or w1 can

also yield better performance. In short, model selection based on AUC selects for

3The expressions in (2) are specific to Fig. 3a; changing the relative position of c0 and c1, or the

magnitudes of the widths, yields different expressions.
4Again, this equation is specific to the arrangement considered in Fig. 3a.
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sharp (i.e., narrow width) and well separated class-conditional distributions. Note

that in terms of the underlying distributions, each of the quantities δc, w0, w1 can be

interpreted as a performance measure.

As a function of the measure δc, AUC is a parabola. Fig. 3c shows an instance

for w0 = w1 = 0.4 and w0 = 0.4, w1 = 0.6. The AUC curve rises rapidly and then

flattens off. It is this nonlinear behavior that explains the appearance of near-one

AUC values in practice. For example, in Fig. 3c, as a model improves in terms of δc,

its AUC value increases quickly to 0.99 at around δc ∼ 0.8. And the infinity of better

models with δc ≥ 0.8 will result in only comparable AUC values, still around 0.99. In

other words, the frequent appearance of high AUC values in practice suggests that the

corresponding models are all in the “good” range of the AUC curve. One can say that

AUC discriminates well between “good” and “bad” models, but not between “good”

models, where those adjectives are gauged in terms of the underlying distributions.5

Similar arguments apply to the performance measures w0 and w1; AUC flattens-off

for sharper distributions.

3 Triangular Distribution with Unconstrained Sup-

port

A better, but still crude, approximation is shown in Fig. 4a. For this case one has

F =
1

2
(
c0 + w0 − t

w0

)2, H = 1− 1

2
(
t− c1 + w1

w1

)2 . (6)

The ROC curve is given by

H = 1− 1

2
(
∆− w0

√
2F

w1

)2 , (7)

and is shown in Fig. 4b. Evidently, this ROC curve is more realistic than that of the

previous section. A common feature, however, is the overlap with the axes.

From the endpoints of the middle segment (Fig. 4b), it follows that the ROC

curve is asymmetric if and only if w0 6= w1. Specifically, if the concavity is mostly

5This is not a problem in model selection, because the standard error of the AUC converges to

zero, as AUC approaches 1 (Hanley and McNeil 1983).
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to the left, then w0 < w1. Bowing to the right suggests w0 > w1. Note that the

asymmetry is independent of ci.

Also, the two extremes of the curves - F = 0 and H = 1 - convey some useful

information as well. Note that if δw = δc, then the right extreme of the curve meets

the (1,1) point without overlapping the H = 1 line. Similarly, δw = −δc implies that

the left extreme of the curve meets the (0,0) point without overlapping the F = 0

axis. Therefore, the amount of overlap of the curve and the two axes is a measure of

the distance between the two means relative to the difference between the half-widths.

AUC can be computed to be

AUC = 1− 1

8
(

∆
√

w0w1

)4 (8)

Like the expression for AUC in the previous case (eq. 4) this expression also displays

an affinity for the quantity ∆. Furthermore, noting the quartic power of ∆, in com-

parison with the quadratic power in (4), it is clear that this AUC is more nonlinear

in that it rises faster and has a broader plateau. Fig. 4c displays this quartic de-

pendence. This further flattening of the AUC curve exacerbates AUC’s inability to

discriminate between good models.

4 Gaussian Distribution

Among the three distributions dealing with unbounded forecast quantities, the Gaus-

sian offers the most realistic approximation. However, the expression for ROC and

AUC are not as transparent because of the appearance of certain integrals. The

likelihood for the forecasts in the ith class is written as (see Fig 5a)

Li(x) =
1√

2πw2
i

exp
− 1

2
(

x−ci
wi

)2
. (9)

Then, (1) implies

F = Φ(
c0 − t

w0

) , H = Φ(
c1 − t

w1

), (10)

where Φ(x) is the standard normal cumulative distribution,

Φ(x) =
1√
2π

∫ x

−∞
exp−

1
2
z2

dz . (11)
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Eliminating the threshold t from these equations leads to a formal expression for the

ROC curve:

H = Φ[
δc

w1

− w0

w1

Φ−1(F )], (12)

where Φ−1 is defined by Φ−1Φ = 1. This expression is not too illuminating, but it

does allow one to compute some useful quantities. For example, it implies that if

plotted on a double-probability paper, the ROC curve will be a straight line with

slope w0/w1 and intercept δc/w1. Note the similarity to eqn. (3) for the case of

uniform distributions. It also allows one to compute the slope of the ROC curve to

be L1(t)/L0(t).
6 Substituting (9) into this expression yields a formula (not shown)

that implies that the slope of the ROC curve at its ends is either 0 or ∞. In other

words, the ROC curve is always tangent to the axes.

A common error is to assume that a theoretical ROC curve based on gaussian

distributions is constrained to obey the canonical ROC behavior, i.e., concave either

above or below the diagonal. Although this is true for the symmetric case where

w0 = w1, in general the ROC curve is not strictly concave. It is easy to show

that if w0 6= w1 then the ROC curve crosses the diagonal at precisely one point

(other than the end-points). Proof: The ROC curve will cross the diagonal where

Φ( c0−t
w0

) = Φ( c1−t
w1

), i.e., when c1
w1
− c0

w0
= ( 1

w1
− 1

w0
) t. This equation has only one

nontrivial solution when w0 6= w1. The value of F at this crossing point is given by

Φ( δc
δw

). Fig. 5b illustrates this cross-over.

This result must be interpreted cautiously. Specifically, it does not imply that

an apparently concave empirical ROC curve suggests w0 = w1. Even if w0 6= w1, the

ROC curve can still appear to be mostly concave (i.e., without a cross over). This is

because Φ(x) is a rapidly increasing function of x. In fact, it is nearly 0 or 1, when x

is nearly +2 or -2, respectively. Therefore, a concave empirical ROC curve suggests

one of two possibilities: Either w0 = w1, or w0 6= w1 but with | δc
δw
| ≥∼ 2

6In decision theoretic applications where one seeks an “optimal” decision threshold, this expres-

sion is often given to argue for the threshold at which slope=1. However, that choice assumes that

the two classes have equal prior probabilities, pi. p1 and p0 are sometimes referred to as the base

rate and its complement. The optimal threshold should be the one corresponding to slope = p0/p1.
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AUC can be computed to be

AUC = Φ(
δc√

w2
0 + w2

1

) . (13)

Again the AUC is a nonlinear function of all the underlying parameters that assess

performance - δc, w0, and w1. The functional dependence on the former is shown

in Fig 5c. Clearly, the nonlinearity of the curve is present even in this realistic

example. Again, two “good” models, with one distinctly superior to the other (e.g.,

with different values of δc) can have comparable and high AUC values. Eq. (13) also

explains why empirical AUC values in practice are often in the 0.9 or higher range.

The reason can be traced again to the behavior of Φ(x). As mentioned previously,

modestly large values of x, e.g., 2, correspond to near-one values for Φ.

5 Triangular Distribution with Constrained Sup-

port

In some situations the forecast quantity is a probability, calling for distributions that

are restricted to that range. The first of the two such distributions considered here is

shown in Fig. 6a. This model does assume that the forecasts do span the full range

of possibilities (i.e., 0 to 1). In the language of Murphy and Winkler (1987, 1992),

the forecasts are assumed to be well-refined. Also note that in this approximation,

the only parameters are the two modes, c0 and c1.
7

Three different regions must be considered: t ≤ c0, c0 ≤ t ≤ c1, and t ≥ c1.

Unlike the previous examples, here there exists no region that overlaps with the axes;

this is a consequence of the aforementioned assumption about the refinement of the

forecasts. The respective ROC curves are

H = 1− c0

c1

(1− F ) , H = 1− 1

c1

[1−
√

(1− c0) F ]2 , H = (
1− c0

1− c1

) F . (14)

Note that the ROC curve for the first and third regions are linear, while that of the

middle section is not. Fig. 6b displays the ROC curve.

7First, note that in this section, c stands for the mode (not mean) of the distribution. Also, the

widths of the distributions are not independent quantities. The mean is given as (1 + c)/3, and the

variance as (1− c + c2)/18.
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From an expression of the slope it follows that a symmetric ROC curve implies

c0 +c1 = 1. Any other combination of c0 and c1 will result in an asymmetric curve. It

is also easy to show that there does not exist a cross-over; a nontrivial curve is either

always above or always below the diagonal. It also follows that the ROC curve will

bow to the left if c0 ∼ 0.5, and to the right if c1 ∼ 0.5.

Finally, the AUC can be computed to be

AUC =
1

2
+

1

2
(c1 − c0)−

(c1 − c0)
3

6c1(1− c0)
. (15)

First, note that AUC depends on two independent quantities - (c1−c0) and c1(1−c0).

For small values of the former, i.e., low performance, the first two terms in (10)

dominate the expression, leading to a linear dependence on c1 − c0. However, for

higher performance values, the last term begins to penalize (because of the negative

sign) AUC in a nonlinear fashion. This nonlinear penalty again leads to a flattening of

the AUC curve for better models. Fig. 6c displays AUC as a function of the measure

c1− c0. The reason the flattening is not evident in this figure is that the simplicity of

the model does not allow high values of AUC. In fact, according to (15) the highest

allowed value of AUC is only 5/6 or 0.83.

6 Beta Distribution

A more realistic likelihood for probabilistic forecasts is the beta distribution

Li(x) =
1

B(ai, bi)
xai−1 (1− x)bi−1 , (16)

where B(ai, bi) =
∫ 1
0 xai−1 (1 − x)bi−1. An instance is shown in Fig. 7a. Note that

in this example, the distributions themselves are possibly asymmetric (or skewed). If

ai, bi are integers, then one can write B(ai, bi) = (ai−1)!(bi−1)!
(ai+bi−1)!

. The mean, mode, and

variance can be computed by

ci =
ai

ai + bi

, mi =
ai − 1

ai + bi − 2
, w2

i =
ai bi

(ai + bi)2 (ai + bi + 1)
. (17)

In this case, given that the likelihoods are written in terms of ai and bi, it is natural

to ask what combination of these quantities constitutes a measure of performance.
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From a decision theoretic point of view, the natural quantity is L1(x)/L0(x), and this

ratio is a function of (a1 − a0) and (b1 − b0).
8 Therefore, these two differences are

natural measures of performance. Note that each of these measures depends on both

c and w. For example,

a1 − a0 = (c1 − c0) + [
c2
1(1− c1)

w2
1

− c2
0(1− c0)

w2
0

] . (18)

The corresponding ROC curve is shown in Fig. 7b. The analytic expressions for

F and H are not illuminating, but the slope of the ROC curve is

slope(t) =
B(a0, b0)

B(a1, b1)
ta1−a0 (1− t)b1−b0 . (19)

A symmetric ROC curve requires the product of the slopes at the end points of the

curve to be inversely proportional. And for that to occur one must have (a1 + b1) =

(a0 + b0). It follows that the ROC curve is symmetric if (a0 + b0) = (a1 + b1), which

in terms of the means and variances translates to

c1(1− c1)

w2
1

=
c0(1− c0)

w2
0

. (20)

An apparent asymmetry in an empirical ROC curve, then, implies that this equation

is violated. Note that in the symmetric ROC case, the two performance measures

a1 − a0 and b1 − b0 differ only in sign.

It also follows that a cross-over occurs when a1 > a0 and b1 > b0, because the

slopes at the two extremes are then both less than 1. These two inequalities together

imply
c1(1− c1)

w2
1

>
c0(1− c0)

w2
0

. (21)

Compare with (20) which is the condition for a symmetric ROC curve. The quantity

c(1− c)/w2 determines both the symmetry and the cross-over of the ROC curve. The

cross-over is displayed in Fig. 7b.

The expression for AUC is somewhat tedious to derive, but for the case of integer

parameters can be computed as

AUC =
1

(a1 + b1)

1

B(a0, b0)

a1∑
k=1

B(a0 + a1 − k, b0 + b1 + k − 1)

B(a1 − k + 1, b1 + k)
. (22)

8Technically, this expression should be multiplied by the ratio of the respective prior probabilities

as well. They are neglected here because they are not functions of x.
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Fig. 7c displays a plot of AUC as a function of the measure (a1−a0) for a few different

values of the parameters. The nonlinearity is now evident when AUC reaches near-1

values.

7 Summary and Conclusion

Several models are examined for the purpose of explicitly illustrating some features

of ROC curves and the area under the curve (AUC). The findings aid in interpreting

the shape of the ROC curve in terms of the parameters defining the class-conditional

distributions of the forecast quantity. In addition to providing a pedagogical exposi-

tion of ROC analysis, the work also offers some guidance for interpreting ROC curves

and AUC. The guidance is based on only the models examined here. As such, the

generality of the results is not assured by any means. Nevertheless, all of the exam-

ples shown in Fig. 2 are found to be completely consistent with the findings here.

The following statements should be interpreted only as qualitative guidance. More

quantitative statements are found in the text.

For unbounded forecasts, an asymmetric ROC curve suggests unequal widths for

the underlying distributions. If the class with the larger mean is labeled as 1, then a

concavity to the top suggests w0 > w1, and concavity to the bottom suggests w0 < w1.

In other words, in attempting to explain any asymmetry in an empirical ROC curve,

it is advisable to examine the widths of the underlying distributions. The amount of

overlap with the axes is also a measure of the difference in the widths. The crossing

of the diagonal by an ROC curve suggests that the quantity | δc
δw
| is smaller than some

critical value. For example, if the distributions are gaussian, then that critical value

is approximately 2.

For bounded forecasts, the distributions examined here do not generate an over-

lap with the axes. The existence of a significant overlap in an empirical ROC plot

suggests that the underlying distributions are different from the ones examined here

in some significant way. The symmetry and cross-over of ROC are determined by a

combination of means and variances, e.g. eqn. (20).
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For both bounded and unbounded forecasts, AUC increases nonlinearly with re-

spect to natural measures of forecast quality derived from parameters of the under-

lying distributions. Moreover, in the examples considered here, the more realistic

models display more of this nonlinearity. The nonlinearity is such as to reduce the

effectiveness of AUC in assessing performance, as performance increases. As such,

the frequent occurrence of near-one AUC values observed empirically is an indication

that many forecasts are of “reasonable” quality.
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Figure Caption

Figure 1. A generic situation involving a forecast of two classes.

Figure 2. Examples of ROC curves representing different levels of performance quality.

The diagonal line corresponds to random forecasts (i.e., poor performance), while the

curves away from the diagonal represent higher levels of performance. The following

features are noted: Symmetric ROC curves (a), symmetric and asymmetric curves,

also overlapping one axis (b), and extremely concave curves (c).

Figure 3. The schematics of uniform class-conditional distributions (top), the corre-

sponding ROC curve (middle), and the AUC curve as a function of δc = c1 − c0.

Figure 4. Same as Fig. 3, but for triangular distributions over unbounded forecasts.

Figure 5. Same as Fig. 3, but for Gaussian Distributions.

Figure 6. Same as Fig. 3, but for bounded (e.g., probabilistic) forecasts.

Figure 7. Same as Fig. 3, but for beta distributions. The corresponding parameters

are b0 = 2, b1 = 3, a0 = 2, with a1 taking values 2, 3, 4, 5 (from top to bottom).
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