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ABSTRACT

Modern numerical weather prediction (NWP) models produce forecasts that are gridded spatial fields.

Digital images can also be viewed as gridded spatial fields, and as such, techniques from image analysis can be

employed to address the problem of verification of NWP forecasts. One technique for estimating how images

change temporally is called optical flow, where it is assumed that temporal changes in images (e.g., in a video)

can be represented as a fluid flowing in some manner. Multiple realizations of the general idea have already

been employed in verification problems as well as in data assimilation. Here, a specific formulation of optical

flow, called Lucas–Kanade, is reviewed and generalized as a tool for estimating three components of forecast

error: intensity and two components of displacement, direction and distance. The method is illustrated first on

simulated data, and then on a 418-day series of 24-h forecasts of sea level pressure from one member [the

Global Forecast System (GFS)–fifth-generation Pennsylvania State University–National Center for Atmo-

spheric Research Mesoscale Model (MM5)] of the University of Washington’s Mesoscale Ensemble system.

The simulation study confirms (and quantifies) the expectation that the method correctly assesses forecast

errors. The method is also applied to a real dataset consisting of 418 twenty-four-hour forecasts spanning

2 April 2008–2 November 2009, demonstrating its value for analyzing NWP model performance. Results

reveal a significant intensity bias in the subtropics, especially in the southern California region. They also

expose a systematic east-northeast or downstream bias of approximately 50 km over land, possibly due to the

treatment of terrain in the coarse-resolution model.

1. Introduction

A numerical weather prediction (NWP) model pro-

duces spatial fields of forecast parameters generally as

a complex array of spatial features placed on a regular

two-dimensional grid. Although observations are gath-

ered at irregular points and times, they are dynamically

assimilated to a uniform grid as well, producing a two-

dimensional analysis field of a parameter. The forecasts

may then be verified by comparing the two complex grid-

ded fields. It has been shown, however, that some of the

simpler notions of comparison produce misleading results

at finer grid resolutions. For example, taking a difference

between corresponding grid points from the two fields

penalizes the forecasts twice (but for the same error) if a

forecast feature such as a frontal zone or wind maximum

does not overlap or only partially overlaps the observed

feature (Brown et al. 2004; Davis et al. 2006). For such

reasons, a number of verification techniques have been

developed, wherein the spatial structure of the two fields

is taken into account. A classification and a review of

these techniques appear in Casati et al. (2008). The ref-

erences in that article are quite extensive, but the fol-

lowing works are also relevant: Gebremichael et al.

(2004) and Germann and Joss (2001).

Hoffman et al. (1995) emphasize ways in which one

field (e.g., forecast) can be transformed into the other (e.g.,

observed). They examine a specific type of transformation,

called distortion, which is a combination of spatial dis-

placement and changes in intensity. Any errors that can-

not be accounted for by distortion are considered to be

residual errors (e.g., rotation or shape). Variations on this

theme have been put forth, for nowcasting, verification,
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and/or assimilation, by Douglas (2002), Brill (2002), Du

et al. (2000), Hoffman and Grassotti (1996), Nehrkorn

et al. (2003), Brewster (2003), Germann and Zawadzki

(2002, 2004), and Reilly et al. (2003). Some of these

works are inspired by the ability of the approach to as-

sess the distortion error itself, because it can offer ways

of possibly correcting the forecasts. Hodges (1994, 1995,

1996, 1998, 1999), too, has examined computer vision

algorithms for tracking meteorological features.

In image-processing circles, estimating these transfor-

mations is called optical flow (Trucco and Verri 1998).

Two meteorology papers that employ optical flow ex-

plicitly are Bowler et al. (2004) and Keil and Craig (2007).

The former employs ideas from optical flow, not for

verification, but for the purpose of producing nowcasts.

The latter uses optical flow concepts for verification.

Specifically, Keil and Craig allow for an arbitrary match

between pixels in one field and pixels in the other field,

and then identify the specific match that minimizes the

difference (in a least squares sense) between the two

images. Additionally, they embed this scheme within a

pyramidal image-matching scheme, wherein the former is

repeated over successively finer scales.

As indicated above, the notion of an optical flow is

broad, and can include any method for mapping one im-

age to another. Many variants take a purely algorithmic or

nonparametric approach (e.g., Keil and Craig 2007), ca-

pable of modeling a wide range of flow patterns. But there

is one method whose simplicity allows for even analytic

solutions. The method is called the Lucas–Kanade (LK)

method, and it appeared early in the development of the

field (Lucas and Kanade 1981). In spite of the develop-

ment of more refined methods, it has repeatedly proven

itself in a wide range of applications (Baker and Matthews

2004). The underlying simplicity of the approach, how-

ever, remains as the main reason for its popularity. The

next section provides the exact formulation of the optical

flow equations and the LK approach to solving them,

thereby rendering the underlying assumptions and limi-

tations more transparent. It also suggests possible gener-

alizations.

The original LK formulation assumes that the in-

tensity of the image is constant in time, because it was

designed to estimate only motion (i.e., displacement).

However, meteorological features develop as well as

move and, so, in this paper the original formulation is

generalized to allow for the estimation of displacement

and intensity errors. Also, the original formulation was

linear (see next section); here, it has been generalized

into a nonlinear formulation in order to provide more

accurate estimates of the errors.

The explicit and transparent nature of the LK ap-

proach (both the original version and the generalization

developed here) is the reason it is adopted in the current

work. This particular choice of the method for solving

the equations of optical flow is also what sets this work

apart from that of Hoffman et al. (1995) and Keil and

Craig (2007). Although further details of the LK ap-

proach are presented below, it is a differential method

(i.e., it calls for spatial derivatives to be estimated) and

local (i.e., assumes that the optical flow field is locally

constant). This is in contrast to the methods of Hoffman

et al. (1995) and Keil and Craig (2007), where these

constraints are not explicitly assumed. One benefit of

the proposed method is that one can then refer to

standard statistical methods and theorems for solving

the problem and explaining/understanding the results;

see section 7.

Finally, a note about the continuous versus discrete

nature of fields is in order. The above-mentioned optical-

flow-based articles deal with a variety of meteorological

variables, including temperature, sea level pressure, pre-

cipitation, and reflectivity. The differential nature of the

LK method calls for the existence of a well-defined de-

rivative, and so it is more suited for continuous fields.

However, its local nature allows for the weaker constraint

of a piece-wise continuous derivative. In other words, as

long as derivatives are computable within regions of the

field, then the method still works. As such, although the

method will work for mixed discrete-continuous fields,

this paper deals only with continuous fields, specifically

sea level pressure.

The main goals of this paper are to 1) revisit the optical

flow approach within a sufficiently simple framework

(i.e., Lucas–Kanade) capable of better elucidating its in-

ner working and 2) generalize it to allow for a diagnostic

decomposition of the forecast errors into intensity and

displacement errors. To that end, a synthetic/simulated

example is studied first, and the approach is then applied

to realistic forecasts of sea level pressure from a member

of the University of Washington Mesoscale Ensemble

system; the member is the fifth-generation Pennsylvania

State University–National Center for Atmospheric Re-

search Mesoscale Model (MM5) initialized by the Na-

tional Weather Service’s Global Forecast System (GFS).

2. Optical flow

The estimation of displacement fields has been well

studied in image analysis circles (Chan 1993; Lim and Ho

1998). A subset of displacement estimation techniques

assumes that the displacements are small; the resulting

displacements are then called optical flow (OF). As such,

technically, an OF field is an approximation to a displace-

ment field. The multitude of techniques for estimating the

displacement field can be classified according to their
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emphasis on the underlying assumptions. At one extreme,

the methods are purely algorithmic, attempting to find any

map that relates one field to another. At the other ex-

treme, the desired map is constrained through explicit/

analytic constraints imposed on the OF. The explicit na-

ture of the constraints renders the methods more trans-

parent. In the latter group, two commonly used techniques

for the estimation of the OF field are the Horn–Schunck

(Horn and Schunck 1981) and LK (Lucas and Kanade

1981) methods. Both are described below because they

provide different ways of viewing OF, but only the latter

method is employed and generalized in the current ap-

plication. As mentioned in the introduction, many of the

techniques in the verification of spatial fields, as well as in

data assimilation, can be considered as optical flow tech-

niques, although they are often not known by that name.

The equations of OF are designed to estimate motion

and, so, time plays a central role. Specifically, one uses

multiple images at different times in order to derive the

OF. The LK and Horn–Schunck methods require only

two images, and for that reason are ideal for use in

verification. Within the verification context, the images

at the two times correspond to the two fields: observed/

analyzed and forecast. Although in the following equa-

tions reference is made to time, it is to be understood

that the earlier image refers to the forecast field, and the

later image corresponds to the observed field. In other

words, in this paper, the OF field maps the forecast field

to the observed field. The inverse map is also useful

because it assesses a different facet of forecast quality,

but it will not be examined here. Keil and Craig (2009)

describe a performance/summary measure that in fact

utilizes both OF fields: the forward and the inverse

maps. Also, since OF was developed for image pro-

cessing, its description generally refers to pixels; here,

pixels and grid points are used interchangeably.

a. Lucas–Kanade (LK)

Consider the intensity of an image at pixel (x, y) and at

time t: I(x, y, t). At a time t 1 dt, the pixels change their

intensities to I(x, y, t 1 dt). The basic assumption of the

traditional OF approach is that the image (or field) in-

tensity does not change appreciably from t to t 1 dt. So,

the intensity at (x, y), at time t, is approximately equal to

that at a shifted point (x 1 dx, y 1 dy), at time t 1 dt:

I(x, y, t)’ I(x 1 dx, y 1 dy, t 1 dt). (1)

Within a verification context, denoting the observed and

forecast fields as Io and If, respectively, this equation

translates to

I
o
(x, y)’ I

f
(x 1 dx, y 1 dy). (2)

Approximating the right-hand side with a Taylor series

expansion yields

I
o
(x, y) ’ I

f
(x, y) 1

›I
f

›x
dx 1

›I
f

›y
dy. (3)

Higher-derivative terms are assumed to be negligible in

the original LK formulation. The collection of all pairs/

vectors (dx, dy), one per pixel, is called the OF field. It is

these quantities in Eq. (3) that are to be estimated from

two images and their spatial derivatives.

All of the derivatives in Eq. (3) can be approximated

with finite differences computed from either image.1

However, Eq. (3) provides only one equation with two

unknowns (dx, dy). Horn and Schunck (1981) propose

a continuity constraint reflecting the assumption that

nearby pixels have similar displacements. They show

that one can set up a constrained optimization problem

whose solutions are unique and physically reasonable.

Alternatively, Lucas and Kanade (1981) assume that the

OF field is locally constant. In other words, it is assumed

that all of the OF vectors in a window of some size (W)

are all approximately equal. But then, that leads to an

overdetermined system of equations for dx and dy, be-

cause each pixel in the window contributes one equa-

tion. In LK one finds the least squares solution to this

overdetermined system. In other words, for a given

window, one computes a single OF vector that on av-

erage (in a least squares sense) solves Eq. (3). This

vector is assigned to the pixel at the center of the win-

dow, and the procedure is repeated for similar windows

centered on all other pixels in the field. The result is an

OF field of vectors, one per grid point, that displays the

displacement error mapping the forecast to the observed

field.

Note that Eq. (3) is linear in the parameters dx and dy.

As such, the least squares estimates can be computed

analytically and uniquely. In the next section, two gen-

eralizations are made, one of which renders the analo-

gous equation nonlinear.

b. Generalizations

As mentioned previously, one of the generalizations

of LK developed here is the extension of the LK to the

situation where the intensity of the field is not assumed

to be constant. The specific model examined here allows

for the intensity to change according to

I
o
(x, y) ’ I

f
(x 1 dx, y 1 dy) 1 A(x, y). (4)

1 Experiments with data examined here suggest that higher-order

differences generally do not affect the results.
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The parameters to be estimated are now dx, dy, and

A(x, y), which represents additive errors in intensity.

Multiplicative errors are addressed in the discussion sec-

tion. The special case with A(x, y) 5 0, for all (x, y), cor-

responds to the traditional OF model of Eq. (3). The dx,

dy parameters may be transformed to polar coordinates,

in which case the radial and angular components repre-

sent displacement and angular errors, respectively.

The Taylor series expansion of If(x 1 dx, y 1 dy) leads

to

I
o
(x, y) ’ A(x, y) 1 I

f
(x, y) 1

›I
f

›x
dx 1

›I
f

›y
dy

1
›2I

f

›x2
dx2 1

›2I
f

›y2
dy2 1

›2I
f

›x›y
dx dy 1 . . . .

(5)

As in the traditional LK approach, neglecting the second

and higher derivatives leads to a linear least squares

problem. Note that estimating the parameters A(x, y),

dx, dy is equivalent to solving a regression problem

with Io as the target (or response) variable and If , ›If /

›x, and ›If /›y as the covariates (or predictors). Then,

the regression coefficients are the parameters dx, dy, and

the y intercept in the regression equation represents the

intensity error A(x, y). As described in section 7, this

regression interpretation/model for OF is useful because

it aids in explaining some of the results, and can also

preclude some pitfalls.

The inclusion of the second derivatives in Eq. (5)

renders the least squares equations (not shown) truly

nonlinear in the parameters, calling for a nonlinear op-

timization approach.2 The benefit of including higher

derivatives in the Taylor expansion is a more accurate

estimation of the true forecast error. In general, whether

or not the benefit of the higher accuracy outweighs the

additional computational cost depends on the complexity/

smoothness of the fields. In this work, both the linear and

the nonlinear approximations are examined. Simulated

data are employed to compare the two. In the case of sea

level pressure data, the computational cost was found to

be nonprohibitive, and so the nonlinear model is em-

ployed to fit the realistic data.

The LK approach, as well as the generalizations de-

veloped here, involve a single quantity that must be

specified—the size W of a window across which the OF

field is assumed to be constant. This quantity is discussed

at length in section AU85a.

3. Method

For didactic reasons, the first dataset examined is

simulated. The simulated forecast field If(x, y) is set to

be a bivariate Gaussian over a 50 3 50 grid, with a fixed

mean, no correlation between the two coordinates (x, y),

and a standard deviation S. The quantity S effectively

measures the spatial extent of an ‘‘object’’ in the forecast

field. A small value corresponds to a spatially contained

feature in the field, while a large value is associated with

a field that is mostly constant across the entire image. A

range of S values is examined, namely S 5 7, 9, 11, etc.

For the specific simulation set up here, values smaller

than 7 lead to poorly estimated derivatives, while values

larger than 11 lead to similar results because then the

field is nearly constant. For this reason, only the results

for the extreme values (i.e., 7 and 11) are presented.

The simulated observed field is the same as the fore-

cast field, except that it is incrementally shifted along the

x and y directions from 1 to 10 grid lengths. Additionally,

the intensity across the entire grid of the forecast differs

from that of the observed by an additive component that

amounts to 20% of the maximum intensity of the fore-

cast field. Therefore, for example, when the amount of

shift is 1 grid length in the x and y directions, then the

true value of the magnitude of displacement error is
ffiffiffi

2
p

,

and the true value of the angular error is 458. The true

value of the intensity error varies with the parameters of

the Gaussian, but it is always 20% of the maximum in-

tensity.

The quantity S is a parameter of the simulation, but the

OF method itself has a parameter as well, namely W.

Here, it is varied over a wide range of values (from 5 to 41).

In the current formulation, W , 5 values are not allowed

because second derivatives require a minimum of five grid

points to compute. Values larger than about 11 produce

results that are mostly the same as those of W 5 11. For

these reasons, only the results for W 5 5 and W 5 11 are

shown.

Recall that the proposed OF approach involves three

parameters that must be estimated: intensity, displace-

ment, and angular errors. Each of these parameters is

a spatial field and, so, requires an image or a contour plot

to display. Producing all of these figures for all the pa-

rameters of the simulation is impractical. Instead, only

summary measures are computed to capture the accu-

racy of the error estimates. Given that the true values of

the errors are known (for the simulated data), the sum-

mary measure examined here is the proportion of (or

relative) error:

2 Here, the algorithm used is a quasi-Newton variable metric

method known as the Broyden–Fletcher–Goldfarb–Shanno (BFGS)

algorithm (Press et al. 1999); this is one of the methods invoked in

an R function called optim(); see R Development Core Team

(2008).
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Median Estimated Error� True Error

True Error
. (6)

For example, for the displacement error the quantity

computed is

PropDisErr

5
Median Estimated Displacement Error�

ffiffiffi

2
p

ffiffiffi

2
p . (7)

The analogous quantities for intensity and angular error

are computed similarly and are denoted PropIntErr and

PropAngErr, respectively.3 The dependence of these

quantities on the relative shift between the forecast and

observed fields is explored below.

A useful quantity to examine is the histogram of the

estimates of the three errors. For instance, a peak in the

histogram of the angles of the OF vectors would suggest

a preponderance of vectors all pointing in a given di-

rection. Similarly, a peak in the histogram of the mag-

nitude of the OF vectors would imply that there is a

systematic displacement relating the two fields. There-

fore, in this paper, each of the three error fields associ-

ated with the three components of error is accompanied

by a histogram that shows the distribution of the corre-

sponding errors across the entire image.

Although such univariate histograms convey useful

information, it is more useful to examine the joint his-

togram of the three quantities. This quantity is difficult

to display in two dimensions, and so only the joint his-

togram of two of the three components is produced here.

Again, considering the magnitude and angle, in a hypo-

thetical situation where there is a peak in the histogram

of directions, it is the magnitude of the vectors near this

peak that would also have an important interpretation,

more so than the magnitude of all vectors across the

entire OF field. The joint histogram of the magnitude

and direction of the OF vectors summarizes the OF field

in a manner that reflects the coherence between the mag-

nitude and direction.

4. Results: Simulated data

FF1 igure 1 contains multiple panels that together display

all the various components of forecast error according to

the OF approach. The underlying dataset is one of the

above-mentioned simulations. Specifically, the forecast

field is a Gaussian with a standard deviation (i.e., width)

of S 5 11, centered at coordinates (10, 10) on a 50 3 50

grid. To obtain the observed field, the forecast field is

shifted by one grid length in the x and y directions, and

the number 60 (i.e., 20% of the maximum forecast field)

is added to it.

The top panel in Fig. 1 shows the forecast and ob-

served fields as contour plots: red for forecast and blue

for observed. Also shown are the OF vectors as esti-

mated according to the nonlinear scheme described

above, with W 5 9. To avoid clutter, every fourth vector

is shown. Visually, the OF field confirms what is known

about the relative position of the observed and forecast

fields, namely that one is shifted with respect to the other

in the 458 direction (measured counterclockwise from

the x axis). An explanation of why the OF field appears

distorted is given in section 7; it is related to the flatness

of the Gaussian far from its center.

The remaining panels show the three components of

the forecast error and their distributions. The spatial

distribution of the errors is shown as both a grayscale

image as well as a contour plot superimposed on the

image.4 The intensity error is mostly constant across the

field, as expected. The corresponding histogram shows

the distribution of these errors, and the true value of 60

(as marked by the vertical red line). Although these

intensity errors vary from 54 to 64, the bulk of the his-

togram is around 60 (i.e., the true value), and the mode

of the histogram is at 60. The displacement errors show

a similar spatial pattern, and the corresponding histo-

gram shows that they are correctly clustered around the

true value of 1.414 (i.e.,
ffiffiffi

2
p

). The angular errors show

a different spatial pattern, but the estimates are tightly

clustered around 458, again the correct value. In short,

the nonlinear scheme for estimating the three error

parameters produces correct results, namely relatively

smooth spatial fields, with the magnitude of the re-

spective errors clustered at approximately the correct/

true values. Section 7 explains why the estimates are not

exactly equal to the true values.

F F2igure 2 examines the accuracy of the estimates as

a function of the shift between the forecast and observed

fields, for two different object sizes (S 5 7, 11) and window

sizes (W 5 5, 11). Consider the three panels for W 5 5 and

S 5 7 (top, left). The intensity error (PropIntErr) increases

with shift, but that of the nonlinear model (squares) in-

creases much slower than that of the linear model (circles).

Even with a shift as large as 10 grid lengths, the proportion
3 As shown in the next section, the distribution of the errors is

generally skewed. For that reason, the median (not the mean) is

taken to represent the center of the distribution. The mode is also

computed, but it is not clear if the extra effort involved with esti-

mating a mode is justified by the increased accuracy.

4 In the grayscale images, white (black) corresponds to a mini-

mum (maximum) value across the image.
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of the error is only 0.001 (i.e., 0.1%) for the nonlinear

model. Regarding the magnitude of the displacement er-

rors (PropDisErr), it can be seen that these errors are

generally much larger than the intensity errors; in fact, for

a shift of 10 grid lengths, the proportion of the error is

nearly 5, or 500%, for the nonlinear model! As for angular

errors, although PropAngErr is nearly 150% for a shift of

10 grid lengths, it is nearly 0% for shifts as large as two grid

lengths. Note that although the nonlinear model performs

better than the linear one in terms of intensity and dis-

placement error, the two models are comparable in terms

of estimating the angular errors.

Increasing the size of the window from 5 to 11 leads to

similar results (three panels in the bottom/left in Fig. 2).

FIG. 1. The OF field and the three components of error in one of the simulated fields. (top) The OF field (arrows)

mapping the forecast (red) to the observed (blue) field. (bottom) The (left) spatial distribution and (right) histogram

of the three components of the forecast error. See text for details.

Fig(s). 1 live 4/C
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FIG. 2. The proportion of intensity error (PropIntErr), displacement (PropDisErr), and angular error (PropAngErr), as a function of the

shift between the forecast and observed Gaussian fields, for two different Gaussian widths, S 5 (left) 7 and (right) 11, and at two different

window sizes W 5 (top) 5 and (bottom) 11. Circles (squares) denote the linear (nonlinear) results.
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One notable difference is that the nonlinear model does

not add much to the linear model, in terms of estimating

the intensity errors. As for the displacement errors, the

nonlinear model is still superior. Also, the displacement

errors are lower than that with W 5 5. Based on an ex-

amination of this and other W values (not shown), it

follows that for the parameters examined in this simu-

lation, the choice of W does not significantly affect the

results. In fact, as is shown next, the effect of W becomes

even more muted as the size of the object increases.

For W 5 5 and S 5 11 (three panels in top/right of

Fig. 2). The nonlinear model improves over the linear

model in terms of all three measures. Here, PropIntErr

is somewhat larger than that obtained for the smaller

object with S 5 7; a shift of 10 grid lengths now leads to

PropIntErr 5 0.1 (i.e., 10%). However, PropDisErr and

PropAngErr are both improved over their values for

S 5 7; they are both at most about 0.4 (i.e., 40%). Fi-

nally, the W 5 7, S 5 11 results (bottom/right in Fig. 2)

are nearly identical to those of W 5 5, S 5 11. In other

words, as mentioned above, the effect of W is reduced

as the size of the feature increases.

As noted previously, one may estimate the true errors

with the mode of the distribution rather than the me-

dian. The corresponding results are not shown here, but

all of the estimates are improved. For example, over the

range of shifts examined, the proportion of error never

rises above 0.5 (i.e., 50%) for any component of error.

The nonlinear results appear a bit more ‘‘noisy’’ than

the linear results. This is primarily the result of compu-

tational variance. An example of such a variance is that

due to local minima. All nonlinear models have local

minima of the error function, in which the system may

get stuck. For realistic data, this variability due to local

minima is not expected to be a source of concern, be-

cause it is usually overwhelmed by other sources of

variation (e.g., sampling).

As discussed above, the joint histogram of the errors is

a useful quantity. FF3 igure 3 shows the joint histogram of

the magnitude of displacement and angular errors for

W 5 9, S 5 11, for a shift of one grid length in the x and y

directions. These parameters are those pertaining to the

simulation shown in Fig. 1. The distribution shows

a clear peak occurring at the correct values of 1.41 and

458 for magnitude and angle, respectively. This type of

correlation between angle and magnitude cannot be

gathered from the marginal histograms. The joint his-

togram is, therefore, useful in assessing the ‘‘coherence’’

of the displacement and angular components of error.

The main purpose of this simulation study has been to

assess what relative errors can be obtained, given the

typical size of objects in a field and the window size W.

However, it is important to point out that there is no

critical value of S (or W) below which the OF results

become unambiguously unacceptable; the results simply

become more meaningful and useful as the field be-

comes smoother. In the next section, the OF method is

applied to realistic data, and it is shown that meaningful

results can indeed be obtained.

5. Results: Realistic data

In this section we apply the above-developed ideas to

sea level pressure (SLP) data obtained from the University

of Washington Mesoscale Ensemble (UWME) system;

only one member is examined, namely the GFS–MM5

24-h forecasts. The domain is the 36-km domain, covered

by a grid of 116 3 140 grid points with a nominal 36-km

grid spacing. First, a single forecast is examined for a

0000 UTC 4 December 2008 initialization. The UTC time

corresponds to 1700 LST on the preceding day (i.e.,

3 December). This date is selected because it corresponds

to a major Pacific Northwest winter storm event during

the 2007/08 winter. F F4igure 4 shows the forecast (top) and

the corresponding observation/analysis (bottom). After

an examination of this case, the method is applied to over

a year’s worth of data (418 days) spanning the period

from 2 April 2008 to 2 November 2009. Only the average

of the OF field and the components of error are examined

here.

Comparing the forecasts with the observations/analysis

for 4 December carefully, one notes that, working west to

east, the low pressure system on the Aleutians is forecast

too far north and is too deep. The associated secondary

FIG. 3. The joint histogram of the displacement and angular er-

rors corresponding to Fig. 1. The dashed lines indicate the true

errors in magnitude and direction.
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low to the southwest is also forecast too deep. The low

pressure system off Vancouver, British Columbia, Can-

ada, is too far southwest (or slow) and both this low and

the associated troughing along the Canadian border ap-

pear to be forecast too deep while the ridge over the Ca-

nadian Rockies verifies much stronger than forecast. To

the south, over the Utah Rockies, the high pressure

center is also more intense than forecast by several

hectopascals.

These errors can be seen readily in the error fields in

FF5 ig. 5. The window size W is set to 31, corresponding to

a window of approximately 1000 km, which is represen-

tative of the synoptic features on the map. Smaller win-

dows result in error fields that are more noisy, picking up

many more small-scale features than are visible without

very close examination. The error fields for larger values

appear to be overly smoothed, indicating the features

discussed but muting the errors by addressing too large an

area. The next section presents more detailed OF results

for different values of W.

Examining Fig. 5 more closely, in the histogram of

intensity errors, and remembering what the values are

(observed field 2 forecast field), the appearance of the

mode and median to the right of zero (marked with

a red, vertical line) indicates that the forecasts are gen-

erally lower than the verifying value. Examining the

spatial distribution of intensity errors, these are associ-

ated with underforecasting the high pressure areas over

the Rockies and the strong gradient between the ridge

and the coastal low, likely a model bias in this case. In-

terestingly, the entire ocean area, including the two

systems mentioned, is slightly overforecast (higher

pressure) than observed with the exception of the two

low pressure systems; a conclusion that would bear

careful examination if persistent over many cases. The

histogram of the displacement errors implies that the

typical displacement error is about one to two grid

lengths. The largest displacement errors occur in the

northwest corner of the region. According to the histo-

gram of the angular errors, the OF vectors are directed

in no single direction (i.e., there is no global shift error in

the forecasts). There appear to be three (or four) modes

in the histogram of the angles, corresponding approxi-

mately to the first, second, and third quadrants. Viewing

the spatial pattern of the angles suggests that these three

modes loosely correspond to three horizontal bands.

Recalling that angles are computed counterclockwise

from the east, it appears in this case that the model is

exhibiting different biases in the subtropical, main

westerlies and the more northern latitudes.

F F6igure 6 displays the average OF field and the three

components of the error; the (vector) averaging is per-

formed on the OF estimates from each of the 418 dates.

Examining the OF diagram, it is evident that forecast

errors are much more significant over land. The histo-

gram of intensity errors indicates a model bias toward

forecasting higher pressures than are observed. Exam-

ining the spatial distribution reveals little or no intensity

bias in the upper latitudes, with a strong bias over south-

ern California and also in the SW quadrant. The lack of

a significant intensity bias in the upper latitudes may be

due to the more transit nature of the synoptic features

in the westerlies. The SW quadrant error, which also is

present in the spatial displacement of the displacement

error, could be a persistent boundary condition error or

model issue with the placement of subtropical features.

The spatial distribution also reveals a clear land–ocean

difference, with spatial errors over the ocean (with the

exception of the SW) generally insignificant but over

land demonstrating a clear forecast bias. The angular

error histogram indicates this bias is persistently to the

northeast. The significant southern California errors in

both intensity and location bear further examination

and may indicate a serious model issue. The joint his-

togram of the averaged errors (F F7ig. 7) confirms that the

above observations indicate that a significant number

of one-grid-length displacements are associated with a

FIG. 4. The (top) forecast and (bottom) observations/analysis SLP

fields for 0000 UTC 4 Dec 2008.
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unique and well-defined direction (west-southwesterly).

Said differently, Figs. 6 and 7 suggest that the forecasts

over land do have a general spatial bias in that they are

placed about one grid length to the east-northeast of the

observations. The forecast errors over water are much

smaller in terms of their magnitude and more diffused in

terms of their direction. As mentioned in the discussion

section, these smaller errors may not be statistically

significant.

6. Choice of window size

As mentioned previously, this OF approach has a pa-

rameter W that must be specified. Recall that it is the

FIG. 5. As in Fig. 1, but for sea level pressure forecasts for 0000 UTC 4 Dec 2007, with W 5 31 (red 5 forecast;

blue 5 analysis in the top panel.) See text for details. Sea level pressure is expressed in hPa.

Fig(s). 5 live 4/C
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size of the window across which the OF field is assumed

to be constant. As such, a sufficiently large window size

is apt to lead to the violation of that assumption. On the

other hand, a small window, with few pixels contributing

to the estimation of the error parameters, can lead to

poor estimates. In short, W is a smoothing parameter:

increasing the size of the window has the effect of

smoothing the OF field.

Before discussing how W should be selected, it helps if

one has an intuitive sense of what W represents within

a verification context. By choosing a specific value of W,

one is effectively considering each image as being com-

posed of an overlapping collage of square tiles, each with

a constant intensity (i.e., no internal structure). The OF

model, then, effectively slides these tiles, and changes their

intensity, in an attempt to find the best match between the

FIG. 6. The OF and the three error fields averaged over 418 days, at W 5 31. In the contour plots, white (black)

corresponds to low (high) values of the quantity being examined.
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forecast and the observed field. In this sense, the size of the

window is a measure of the resolution/scale at which the

verification is to be performed.

In practice, what value of W should one use? The an-

swer depends on two scenarios. In one scenario, a user

(e.g., operational forecaster) has a specific spatial scale of

interest. In that case, W should be set to that value. In the

second scenario, the user (e.g., a model developer or

operational NWP center) has no specific scale in mind,

but is interested in model performance and selection

over a range of scales. In that case, the term ‘‘best’’ im-

plies that the selected model is to be better at all scales,

or at least over some range of scales. As such, the OF

field must be examined for W values over that range.

There may be other situations that call for a different

treatment of W. Generally, however, checking the results

for a range of W values makes for good practice, because

at the least it gives the user an appreciation for how

sensitive the errors are to the choice of scale. From a

technical/computational point of view, this is not prob-

lematic because the estimation procedure can be set up

such that for a given W the errors can be estimated for all

smaller values of W sequentially, at no extra effort.

FF8 igure 8 shows the distribution of the three compo-

nents of error for 4 December 2007, at seven values of W

shown along the right margin of the figure. The reason

for the lowest value of W has been explained in section 3.

The largest value (W 5 101) is a relatively arbitrary

choice intended to examine the results if the window size

is comparable to the size of the field itself (116 3 140).

Also, for the sake of brevity, the spatial distributions are

not shown.

The left column in Fig. 8 shows that the intensity er-

rors are peaked at zero, implying that there is no in-

tensity bias at any of the examined scales, as one would

hope from NWP conservation assumptions. The spread

of the histograms decreases with the size of the window.

Said differently, at smaller scales, intensity errors may

be larger. At W 5 5 (i.e., 180 km), intensity errors vary

from approximately 25 to 10 hPa, with a heavy tail out

to 20 hPa. At the largest scale, the spread of the intensity

errors is reduced to the range 21 to 4 hPa. This pattern

of behavior is expected, because at a specific value of W,

all errors on scales smaller than W are smoothed out.

The magnitude of the displacement errors follows

a similar pattern (Fig. 8, middle column). Over the full

range of W values, the maximum of the errors goes from

approximately six grid lengths (186 km) to about three

grid lengths (98 km). The most likely error at the smallest

scale is about two grid lengths, and interestingly, this er-

ror persists even at the largest scales. For W 5 101, the

appearance of a secondary mode in the histogram of

displacement errors at about one grid length suggests that

at this scale, the spatial field has two distinct regions, each

with a different typical value of displacement error. This

has been confirmed by examining the spatial distribution

of the errors; the two modes at about one and two grid

lengths correspond to the regions over water and land,

respectively.

The distribution of the angular component of the

displacement error is also dependent on W. On small

scales more angles exist in the 180–2708 range. At the

largest scale, the observed field appears to have one

region to the southwest of the forecast field, and another

region to the north of the forecast field. According to the

spatial distribution of these errors (not shown), these

two regions correspond to land and water, respectively.

It is important to point out that although only the ex-

treme scales in Fig. 8 are examined here, the intermediate

values of W are still useful—specifically, for the user in-

terested in verification on the corresponding scales.

7. Statistical considerations

The formulation of the OF model as a parametric

regression problem allows for ‘‘explanations’’ of some

features in the results. For example, it suggests further

revision of the model expressed in Eq. (5). Note that this

regression equation is of the type y 5 a 1 b1x1 1 b2x2. It

is easy to show that the least squares estimates of the

regression coefficients a, b1, b2 are in general correlated.

Specifically, the correlation between the estimates of a

and b1 is proportional to the sample mean of x1. Simi-

larly, the correlation between the estimates of a and b2

is proportional to the sample mean of x2 (Draper and

FIG. 7. The joint histogram of the displacement and angular errors

averaged over 418 days, at W 5 31.
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Smith 1998, p. 129). This implies that the estimates of the

intensity error will generally be correlated with the esti-

mates of the displacement error in Eq. (5). Consequently,

their interpretation becomes ambiguous in that one cannot

be certain if the error is due to intensity or to displacement.

This problem, however, is easily solved: in the current

application, all of the predictors are centered by subtract-

ing their respective means. The estimate of the intensity

error is then assured to be uncorrelated with the estimates

of the displacement error. Note that there may still exist an

apparent correlation between these two quantities when

one views their spatial distribution (e.g., Fig. 5), but that

correlation is a spatial one (i.e., a consequence of the un-

derlying physics).

The regression formulation also aids in explaining

some of the OF results. For instance, it explains why the

OF field in Fig. 1 appears to be nonconstant across the

field, even though the shift between the observed and

the forecast object is a global one. Again, considering

the regression equation y 5 a 1 b1x1 1 b2x2, it can be

shown that the estimates of b1 and b2 are also correlated,

with their correlation proportional to the sample cor-

relation coefficient between x1 and x2. This means that

the direction and magnitude of the OF vectors cannot

FIG. 8. The effects of the window size (denoted on the right of each row) on the distribution of the three components of the error. Data are

SLP for 0000 UTC 4 Dec 2007.
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be estimated unambiguously. An intuitive illustration of

this ambiguity is found in the so-called aperture problem

(Adelson and Movshon 1982). Consider an image con-

sisting of diagonal, alternating black and white stripes.

Now, allow the image to move in some direction. As seen

through a small hole that reveals only a portion of the

image, it is impossible to determine the direction in which

the image has been moved. Note that if the stripes are

nonlinear (e.g., curved), then it is possible to determine

the direction of movement unambiguously. In other

words, the ambiguity in the direction and magnitude of

the OF vectors is present only in regions of the field where

the forecast and observed objects have linear features.

And this happens to be the case far away from the center

of the Gaussians. This explains why the OF field in Fig. 1

appears distorted; far from the center of the Gaussian the

field is mostly flat, leading to linear features that in turn

render the estimation of dx and dy ambiguous. It is im-

portant to emphasize that the aperture problem is not

a problem that can be solved by better models; as long as

the data have linear features, then any model will suffer

from this problem. Parametric models allow for an ex-

plicit explanation of the problem, while nonparametric

models simply do not address it.

One might also wonder why the estimates of the in-

tensity and displacement error in Fig. 1 are not exactly

equal to the true values. Again, the regression inter-

pretation of the OF model offers an explanation. First,

note that the width (e.g., standard deviation) of the

histogram reflects the precision of the estimate, while

the difference between the center (e.g., median) of the

histogram and the true value is the accuracy (or bias) of

the estimate. In this language, while all three of the es-

timates are reasonably precise, the displacement and

intensity errors are clearly biased. Given that the simu-

lated forecast and observed field are completely con-

sistent with the expression in Eq. (4), one would expect

the estimate of the parameters to be unbiased. However,

the model fitted to the data is not that in Eq. (4), but the

approximate model appearing in Eq. (5). In other words,

the postulated/fitted regression model is in fact not the

correct/true model. It is known that this situation leads to

biased estimates of the regression coefficients (Draper

and Smith 1998, chapter 10). In other words, the bias (or

inaccuracy) apparent in the simulated results (Fig. 1) is

a direct consequence of neglecting higher derivatives. In

realistic situations, one does not know the true model,

and so this bias is usually ignored.

8. Summary and discussion

It is shown that a method designed for motion estima-

tion, generally known as optical flow, can be developed to

assess the quality of forecasts of spatial fields, such as sea

level pressure, in a diagnostic fashion. One traditional

formulation, developed by Lucas and Kanade (1981), is

extended to the nonlinear realm and is revised to allow for

a decomposition of forecast error into three components:

errors in intensity and two components of displacement—

distance and angular error. It is also shown that the joint

distribution of these errors conveys useful information.

The method is illustrated on simulated data in order to

examine the behavior of the results as a function of the

typical size and separation of the spatial features, and their

dependence on a parameter (W) of the method that ef-

fectively fixes the spatial scale of interest. Then, opera-

tional forecasts of sea level pressure, averaged over 418

days, are examined within the proposed approach.

In the simulation study, since the truth is known, one

can compute the accuracy of the estimated forecast errors.

The accuracy of the error estimate is shown to improve

with the accuracy of the forecast. There is no ‘‘critical

value’’ of an object size or separation that marks the

breakdown of the method; the accuracy of the estimated

forecast errors simply diminishes with smaller objects,

placed farther apart, as expected. These findings also de-

pend on the parameter W, because it sets the scale over

which the verification is to be performed.

The long-term analysis of sea level pressure forecasts

demonstrates the value and ease of using this technique

to verify and compare gridded forecasts. Results reveal

a significant intensity bias in the subtropics, especially in

the southern California region and in the southwest cor-

ner of the grid. It is not clear if the error in the southwest

is due to the boundary conditions or to poor modeling of

the subtropics. The analysis also exposes a systematic east-

northeast or downstream bias of approximately 50 km

over land, possibly due to the treatment of terrain in the

coarse-resolution model. Finally, the joint distribution of

intensity and displacement errors indicates that the dis-

placement of the forecasts has a coherent spatial struc-

ture. In ongoing work the results of the OF analysis are

being compared with human/expert assessment of the

forecasts.

The intensity errors estimated in this paper are as-

sumed to be purely additive. A model allowing for both

additive and multiplicative errors was developed, specif-

ically, Io(x, y) ’ A(x, y) 1 M(x, y) If(x 1 dx, y 1 dy). It

was found that the estimates of A(x, y) and M(x, y) are

highly (and negatively) correlated. And unlike the addi-

tive model, centering the predictors does not eliminate

the correlation. One possible explanation is that, over the

examined scales, there is simply no way to distinguish

between additive and multiplicative errors. To be able to

distinguish between them, one would have to perform

the analysis over a much larger scale (i.e., larger W). But
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that would tend to oversmooth the field. For this rea-

son, in this work, only additive intensity errors are ex-

amined.

Several extensions of this work are worthwhile. For

example, the error fields in Fig. 5 are all subject to sampling

variability, and so it is important to associate some mea-

sure of statistical confidence to the estimate of the error at

each grid point. Such an assessment of within-day vari-

ability will help in deciding, for example, whether or not

a zero estimate truly is zero. A similar measure of confi-

dence should also be computed for the average OF results

shown in Fig. 6; that quantity will assess the between-day

variability of the results and can help in comparing

forecasts from different NWP models. Preliminary results

based on the empirical sampling distribution of the errors

indicate that some of the features in Fig. 6 may not be

statistically significant. For example, errors in the mag-

nitude of the displacement vectors around 0.2 hPa are

consistent with the sampling distribution of such vectors

mapping two random fields. Further work on the sam-

pling distribution of the errors is currently in progress.

The simulation study performed here examines the

dependence of the OF results on the typical size of an

object; but the size is assumed to be the same in both the

forecast and observed fields. In other words, it is assumed

that objects do not change their size. A generalization of

the proposed approach can introduce additional param-

eters that can represent size errors. Additionally, a useful

study will be to assess the dependence of the results on

the texture of the forecast and observed fields. In spa-

tial statistics, texture is often quantified by a variogram

(Marzban and Sandgathe 2009), which gauges the spa-

tial extent of the correlations across the domain. It will

be useful to set up a simulation where the OF error fields

are examined as a function of texture.

Finally, here, the OF approach is applied to sea level

pressure. The spatial continuity of the field simplifies the

problem; mixed discrete-continuous fields, like reflectiv-

ity or precipitation, involve edges at which derivatives

become ill-behaved. The simplest formulation of the

Lucas–Kanade approach (i.e., linear and assuming no

intensity error) typically gives rise to OF fields that are

not readily interpretable (Marzban and Sandgathe 2007).

Although this simple formulation can be applied to pre-

cipitation fields (Marzban et al. 2009), for such fields it is

more appropriate to either employ nonparametric OF

methods, such as in the method of Keil and Craig (2007),

or to preprocess the forecast and observed fields in order

to smooth the edges of the objects in the domain. The

nonparametric approach has neither the benefits nor

the transparency of the parametric approach developed

here, but it will be interesting to compare the approaches

in terms of their performance. The application of the

proposed approach to precipitation fields is currently

under investigation.
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