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A methodology is proposed for inferring the topology underlying point
cloud data directly from point cloud data. The approach employs basic ele-
ments of Morse theory, and is capable of producing not only a point estimate
of various topological quantities (e.g., genus), but it can also assesses their
sampling uncertainty in a probabilistic fashion. Several examples of point
cloud data in three dimensions are utilized to demonstrate how the method
yields interval estimates for the topology of the data as a 2-dimensional
surface embedded in R3.
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1. INTRODUCTION

There are many sources of high-dimensional data that are inher-
ently structured but where the structure is difficult to conceptu-
alize. The motivation to organize, associate, and connect multi-
dimensional data in order to qualitatively understand its global con-
tent has recently led to the development of new tools inspired by
topological methods of mathematics [Carlsson 2009; Fleishman et
al. 2003; Friedman 1998; Gal and Cohen-Or 2006; Hart 1998; Ni,
Garland, and Hart 2004; Niyogi, Smale, and Weinberger 2008; Pa-
store et al. 2006; Patena, Spagnuolo, and Falcidieno 2009; Pauly,
Kobbelt, and Gross 2006; Wood et al. 2004; Zomorodian 2005].
The applications of topological data analysis methods include di-
mensionality reductioni [Lee and Verleysen 2007], computer vision
[Pascucci et al. 2010], and shape discovery [Adan et al. 2000; Bron-
stein et al. 2011].In most of these applications, the data are point
cloud data, i.e., the coordinates of points in some space. Such data
arise naturally in LIDAR (Light Detection and Ranging) [Grejner-
Brzezinska and Toth 2003], image reconstruction [Hajihashemi and
El-Shenawee 2008], and in the geosciences [Wawrzyniec et al.
2007]. In addition, point-cloud data in multidimensional Euclidean
space can arise from nonlinear transforms of other kinds of pro-
cesses such as time series [Gilmore and Lefranc 2002].

Consider, for example, a cloud of points in 3-dimensional Eu-
clidean space. The cloud of points may be confined mostly to the
surface of a 2-dimensional sphere; or to the surfaces of multiple
disconnected spheres. The number of such spheres is an example
of a topological quantity, in contrast to the specific shape of the
spheres (e.g. round vs. squashed) which is a geometrical quantity.
Another example of a topological quantity is the number of han-
dles; a sphere has none, but the surface of a doughnut has one. A
sphere and a doughnut are topologically distinct surfaces in that
one cannot be transformed to the other without cutting and glu-
ing operations. The number of handles, known as genus, is impor-
tant because it turns out any 2-dimensional compact surface can be
constructed by gluing handles onto a sphere [Lee 2000]. Said dif-
ferently, the genus is a defining characteristic of the topology of a
2-dimensional compact surface.

Whereas the human eye is capable of inferring such structures,
one often requires a method for performing that task objectively.
For instance, the high dimensionality of the data may not allow vi-
sualization in 3 dimensions. Even in 3 dimensions, it may be that
the topological structure must be inferred in a streaming environ-
ment, where a human operator cannot visually inspect every situ-
ation one at a time. Finally, there may be situations wherein the
existence of an underlying structure is not unambiguously evident
even to a human expert. In such a situation, an algorithm capable
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of assigning probabilities to the various topological structures can
be useful for decision making [Katz and Murphy 1997].

Inferring the various disconnected components of any structure
can be done via a class of statistical methods generally known
as cluster analysis [Everitt 1980]. Some cluster analysis methods
are also naturally capable of assigning probabilities to the differ-
ent number of components/clusters. However, such methods are
incapable of inferring higher-order topological structures. For in-
stance, no clustering algorithm can identify the number of handles
(i.e. genus) of a 2-dimensional surface underlying point cloud data.
It is that task which is addressed in this paper. The method also
produces probabilities for different genus values.

Two main methodologies of topological data analysis have been
discussed so far in the literature: One is based on the idea of persis-
tence [Bubenik et al. 2010], and the other on discretized approaches
to Morse theory [Ni, Garland, and Hart 2004; Hart 1998; Patena,
Spagnuolo, and Falcidieno 2009; Wood et al. 2004]. Persistence
captures topological features in data by analyzing continuous struc-
tures associated to data points as a function of a varying scale pa-
rameter that measures, roughly, how coarsely the data points are as-
sumed to sample an underlying topological manifold. While persis-
tence relies on sophisticated constructions derived from algebraic
topology, Morse theory supplies the set of tools for an alternative
approach to topological data analysis [Bremer and Pascucci 2007;
Cazals et al. 2003; Connolly 1996; Hart 1998; Ni, Garland, and
Hart 2004; Nicolaescu 2010]. Morse theory, in its simplest form,
can be thought of as a set of topological constraints which must
be satisfied by a surface, if/when some function on the surface is
known. For example, consider a circle (i.e., a 1-dimensional, com-
pact surface) in 3 dimensions, oriented along the conventional z-
axis. Also, consider the height function on such a circle; it is a func-
tion defined on the circle which produces the height of every point
on the circle from the x-y plain. Such a function has two critical
points, at the bottom and at the top of the circle, where its deriva-
tive is zero. These critical points of the height function restrict the
topology of the surface over which the function is defined. In par-
ticular, they allow one to infer the genus of the underlying surface.

Many application of Morse theory are based on the ultimate de-
sire to infer the precise shape of an underlying “object,” and for
this reason the theory is applied after a mesh has been introduced
on the object [Gal and Cohen-Or 2006; Wood et al. 2004]. In the
present work, Morse theory is applied directly to the point cloud
data, without the need to introduce a mesh at all. This is beneficial
in situation where the genus is of interest independently of finer
specifications such as the shape of the object. Applying Morse the-
ory directly to the point cloud data also provides a framework con-
ducive to statistical inference, because a probabilistic estimate of
the topology follows naturally. Specifically, in the current work,
resampling [Efron and Tibshirani 1993; Good 2005] is employed
to compute the empirical sampling distribution of the genus (and
Betti numbers), which in turn allows for a probabilistic assess-
ment of topology. Although not for the purpose of inferring genus,
Bayesian methods have also been introduced for surface recon-
struction [Diebel, Thrun, and Brunig 2006].

The contributions of this work are twofold. First, it is shown that
Morse theory can be employed to infer the topology of the manifold
underlying point cloud data without the introduction of a mesh, i.e.,
from the point cloud data itself. In the examples, which are point
clouds inR3 , the objects/manifolds are 2-dimensional surfaces and
their topology is uniquely set by one integer: the genus. Second, we
point out that the genus (and more generally, all algebraic topologi-
cal invariants of the data) can be treated as a random variable when
inferred from data. A resampling method is employed to compute

the empirical sampling distribution of the genus, which in turn, con-
veys its sampling variability. As such, one can predict the underly-
ing topology in a probabilistic fashion. The effect of noise on the
precision of the estimates is also examined. A version of this work,
but with fewer examples and without the analysis of the noise, has
been presented in [Marzban and Yurtsever 2011].

a) b)

c) d)

e) f)

Figure 1. Six example point clouds: a) a “dimpled sphere”
(genus = 0), b) a torus (genus = 1), c) a “dimpled torus”
(genus=1), d) a 2-torus (genus = 2), e) the Stanford Bunny, and
f) Buddha. Images of the Bunny and the Buddha are also shown
to aid the visualization of their point cloud data.

2. METHOD

2.1 Generalities

To demonstrate the methodology, four simulated compact surfaces
are considered, plus two often-used but more-realistic examples -
the Stanford Bunny and the Happy Buddha1 all shown in Figure
1. The choice of the simulated examples is based on the desire to

1http://graphics.stanford.edu/data/3Dscanrep/
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have nontrivial topology, but also sufficiently simple topology to
allow for a lucid presentation. Figure 1a is topologically a sphere.
However, two “dimples” are introduced in order to generate more
critical points for the height function, rendering the problem less
trivial. Figure 1b shows the next nontrivial example, namely a torus.
These two surfaces have genus 0 and 1, respectively. The next ex-
ample (Figure 1c) is a genus 1 surface, but with “dimples,” again
for the purpose of having a more complex height function. The final
simulated example (Figure 1d) is a 2-torus, i.e., a genus 2 surface.
Figure 1e and 1f display the point cloud for the Bunny and the Bud-
dha; to aid the visualization of these point cloud data, images of the
two objects are included on the last row of Figure 1. In spite of its
complex embedding in R3, the topology of the Bunny is that of a
sphere, i.e., genus = 0, and the genus for Buddha is 6 [Wood et al.
2004].

The particular embeddings/shapes of the simulated surfaces
shown in Figure 1 are employed in the remainder of the article.
Other embeddings/orientations lead to different height functions;
alternatively, functions other than the height coordinate can be used
to assess the topology. The particular embedding of the Bunny and
the Buddha are shown Figures 4 and 5, respectively. The discussion
section addresses the effect of changing the embedding for the spe-
cific purpose of obtaining more precise (less variable) estimates of
the genus.

Point cloud data are simulated by adding a zero-mean random
Gaussian variable to the height function of the surfaces. The vari-
ance of this variable controls the level of noise in the data. Natu-
rally, and as shown here, small values generally lead to accurate
and precise estimates of genus. Said differently, the inferred value
of genus is the correct one, and the uncertainty of the estimate is
small. Although larger values of the variance are associated with
less precise estimates of genus, for sufficiently large values the es-
timates become inaccurate as well, in the sense that the most likely
genus inferred from data is the wrong genus altogether. An anal-
ysis of the sensitivity of the method to noise level is sufficiently
complex to be relegated to a separate article (reported later). The
complexity of that analysis arises because the effect of noise level
is confounded with the relative size of the various loops around the
handles. For example, even with low noise levels, if one of the tori
in the 2-torus is much smaller than the other, then the method is
likely to imply that the underlying surface has genus one. For the
present work, the standard deviation of the noise added to all of the
examples, except for the Buddha, is fixed at 0.1. Loosely speaking,
given that the radius of the small loop in the torus example is 4
(grid lengths), a standard deviation of 0.1 corresponds to a signal
to noise ratio of about 40. For the Buddha, four different noise lev-
els are examined in order to demonstrate the effect of noise on the
sampling distribution of the genus.

Morse theory requires knowledge of the number of minima, sad-
dle points, and maxima. There exist numerous techniques for find-
ing critical points of a function, but in this article a relatively simple
approach is adopted, again for the sake of clarity.

2.2 Specifics

Although the height function is a standard function on a surface
[Bott 1980; Nicolaescu 2010], the function adopted in this article
is the area of the surface up to some height h, denoted S(h). The
area function is closely related to the height function, but is more
natural when dealing with data. First, the height function for data is
more noisy than the area function, because the latter is inherently an
integral. Second, critical points of the height function correspond
to points in S(h) where the derivative S ′(h) is discontinuous. The

more robust nature, and the presence of “kinks” in the area function
make it a natural choice to use for identifying the critical points in
the height function.

Given that S(h) is computed from data, it is a random variable.
In other words, every realization of the Gaussian about the sur-
face will lead to a different value. In order to assess the variabil-
ity of S(h) resampling is employed [Efron and Tibshirani 1993;
Good 2005]. Specifically, 100 samples/realizations are drawn and
the distribution of S(h), at prespecified values of h is generated.
Each distribution is summarized with a boxplot and displayed for
all h values as a means of displaying the functional dependence of
S(h), as well as its variability, on h.

Note that each sample/realization of data gives rise to a sequence
of S(h) values at prespecified h values. As such, S(h) can be con-
sidered a stochastic time series. Additionally, it is a monotonic,
non-decreasing time series. This monotonic nature of the time se-
ries makes it difficult to identify its kinks (i.e., critical points of the
height function). A more useful quantity is the first derivative of
S(h) with respect to h. Second derivatives are also useful, but here
only the time series of the first derivatives, S ′(h), is examined. It is
the critical points of the S ′(h) time series which are used in Morse
theory to infer topology. The sampling variability of S ′(h) is again
assessed via resampling, and displayed with boxplots.

Figure 2. a) A vertical cross-section of the dimpled sphere
shown in Figure 1. The blue lines mark the height of the criti-
cal points. b) The dependence of the area function S(h) on the
height h shown along the y axis. The blue horizontal lines mark
the height of the critical points. c) The first derivative of S(h)
with respect to h, and the second derivative in panel d).

Figure 2 shows the above ideas for the specific example of a dim-
pled sphere. Figure 2a shows a vertical cross-section of the surface.
Here the h values vary from the global minimum of the surface to
its global maximum, in increments of 0.5. The data simulated about
this surface are not shown, but boxplots summarizing the distribu-
tion of the S(h) are shown in Figure 2b. Although the boxplots are
relatively small, and difficult to see, their medians are connected
by a red line as a visual aid. Also difficult to see are the “kinks”
in the red line at the critical points, marked by the blue horizontal
lines. The first derivative (Figure 2c) better shows both the kinks
and the sampling variability. It is evident that some kind of a kink
exists at each of the critical points of S ′(h) (again, marked by the
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blue lines). The kinks can be generally classified into three types:
an increasing step function, a cusp (i.e., ∧), and a decreasing step
function, respectively corresponding to minima, saddle points, and
maxima. The second derivative of S(h) is also shown (Figure 2d),
only to illustrate that it too carries information useful for identify-
ing critical points. However, it is not used in the present work.

Figure 3. Same as Figure 2, but for the torus.
The analogous figures for the torus example are shown in Figure

3. Again, it can be seen that the kinks in the area function (and its
derivatives) occur at the locations of the critical points of S ′(h),
and that the shape of the kinks in the first derivative are of the same
type as seen previously, namely step functions, and cusps. Similar
results are found for the dimpled torus and the 2-torus (not shown).
The analogous figures for the Bunny and the Buddha are shown in
Figures 4 and 5.

Figure 4. Same as Figure 2, but for the Bunny.

Figure 5. Same as Figure 2, but for the happy Buddha.

2.3 Finding Critical Points

Although there exist standard methods for finding critical points
of a time series, most rely on some sort of time series modeling.
The time series models, in turn, have numerous parameters which
must be determined. Although there exist criteria (e.g., maximum
likelihood) for estimating the best models, for the sake of clarity,
a very simple approach is adopted here. The approach is based on
template matching. Specifically, three templates are selected corre-
sponding to the aforementioned three kinks observed in the series
S ′(h), namely 1) an increasing step function for finding local min-
ima in the time series, 2) a cusp function for finding the saddle
points, and 3) a decreasing step function for identifying local max-
ima in the series.

Figure 6. Left column: The time series generated by sliding
three template across the time series of S ′(h) and computing a
measure of the error/residual between the time series and each
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template. Right column: The histogram of the three template
errors. From top to bottom, the templates are the increasing
setp function, the cusp, and the decreasing step function.

By sliding each of the templates across the time series for S ′(h),
and computing the residuals, one obtains three additional time se-
ries. The left column in Figure 6 shows these series for one realiza-
tion of data about the dimpled sphere. The vertical lines are at the
h values corresponding to the critical points. Given that these time
series are of residuals, near-zero values indicate a close agreement
between the template and the time series of S ′(h). It can be seen
that the residuals corresponding to the first template (top/left panel
in Figure 6) approach zero only at the location of the local minima.
Similarly, the residuals for the second template (middle/left panel)
are near zero only at the location of the saddle points. The final
panel shows the residuals for the last template, and the residuals
are near zero only at the location of the local maxima. To quantify
the notion of “near-zero,” the histogram of the residuals is exam-
ined (right column in Figure 6). Specifically, any residual less than
one standard deviation of zero is defined to be “near-zero.” This 1-
standard-deviation value is displayed with the vertical line on the
histograms in Figure 6.

In short, sliding three templates across the time series of S ′(h),
and examining near-zero values of the ensuing residuals correctly
identifies the locations of the critical points of S(h). This method
for automatically identifying critical points of the height function
for data can be improved upon. And as mentioned previously, there
exist more sophisticated methods for identifying critical points.
However, that is not the main goal of the present work. The rudi-
mentary method outlined here is sufficient to demonstrate the main
goal of the work - that Morse theory can be employed to estimate
the topology directly from point cloud data, and to express the sta-
tistical uncertainty in that estimate.

3. MORSE THEORY

The material presented in this subsection is only a small portion of
Morse theory, and so, has been called Baby Morse Theory [Bott
1980, 1982].

Given a surface S, the Poincare polynomial is defined as

P (S) =
∑

k

bk t
k ,

where −1 ≤ t ≤ 1, is a quantity with no special meaning, and bk
is the kth Betti number. For a 2-dimensional surface, k = 0, 1, 2.
Intuitively, b0 is the number of simply-connected components of
S, b1 is the number of noncontractable loops on the surface, and
b2 is the number of noncontractable surfaces. For example, for a
2-sphere, P (S) = 1+ t2, and for a torus, P (S) = 1+2t+ t2. The
2t term reflects the fact that there are two noncontractable loops on
a torus - one around the “hole” of the doughnut, and another going
around the “handle.” As another example, consider a 2-torus for
which P (S) = 1 + 4t+ t2. It is important to point out that P (S)
is a topological quantity in the sense that any 2-sphere (symmetric,
squashed, dimpled, or otherwise) has P (S) = 1 + t2. The same is
true of the other examples considered; their Poincare polynomial is
independent of their embedding/shape.

Given a function f defined on a surface, the Morse polynomial
is defined as

M(f) =
∑
Pi

tni ,

Pi denotes the critical points of f , and ni is the index of f at the
ith critical point. The index is defined to be the number of non-

decreasing directions for f . Unlike the Poincare polynomial, the
Morse function is not a topological quantity. For example, consider
the perfectly round 2-sphere. Then the height function has 2 critical
points, with indices 0 and 2, corresponding to the South and North
poles, respectively. This is so, because at the South pole there are no
directions in which the height function decreases, while there are
two such directions at the North pole. Then, for the height function
on this sphere one has M(f) = 1 + t2. By contrast, a 2-sphere
with dimples in it (e.g., Figure 1a) has 6 critical points with indices
0, 1, 2, 0, 1, 2, respectively, moving up from the bottom of the
figure. For this height function, M(f) = 2 + 2t+ 2t2. As another
example, for the height function on the torus in Figure 1b, one has
M(f) = 1 + 2t+ t2.

Central to Morse theory are the so-called Morse inequalities
[Bott 1980; Nicolaescu 2010]. They are expressed in two forms
- “weak” and “strong:”

M(f) ≥ P (S) , M(f)− P (S) = (1 + t)Q(t), (1)

where Q(t) is any polynomial in t with non-negative coefficients.
In the above examples, note that for some functions one has

M(f) = P (S). Such functions are called “perfect.” Intuitively,
such a function tightly “hugs” the surface. As such, the coefficients
in the corresponding Morse function are equal to the Betti num-
bers. As a result, knowledge of a perfect function is tantamount
to precise knowledge of the topology (technically, homology) of
the underlying surface. For all non-perfect functions, the Morse in-
equalities provide only an upper bound on the Betti numbers, and
do not uniquely identify the topology.

The search for perfect functions is aided by the Lacunary prin-
ciple [Bott 1980]: If the product of all consecutive coefficients in
M(f) is zero, then f is perfect. Another useful corollary of the
strong form of the inequalities follows upon considering t = −1:∑

Pi

(−1)ni =
∑

k

bk (−1)k. (2)

This places a constraint on the allowed number of minima, saddle
points, and maxima:

nmin − nsaddle + nmax = b0 − b1 + b2. (3)

And since in this article only surfaces with b0 = b2 = 1 are con-
sidered, then

b1 = 2− nmin + nsaddle − nmax . (4)

Finally, given that any 2-dimensional surface can be constructed by
gluing tori to a sphere, it follows that b1 must be even (including
zero). The genus of a compact surface is then found to be

genus = b1/2 . (5)

For a sphere, a torus, and a 2-torus (e.g. in Figure 1), the genus is
0, 1, and 2, respectively. Intuitively, the genus counts the number
of “holes” or “handles” in a compact surface.

4. RESULTS

Armed with a method to find the number of minima, saddle points,
and maxima of the height function (section 2.3), one can then ex-
amine the distribution of each. The top panel in Figure 7a shows
the boxplots summarizing the three distributions for the dimpled
sphere example. Recall that for this example, the correct number of
minima, saddle points, and maxima is 2 for each. The median of the
three boxplots is found to be precisely at 2. The 1st and 3rd quar-
tiles of the distribution (i.e., the bottom and top sides of the boxes
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in the boxplots) suggest an uncertainty of about ±1 for each of the
numbers. In other words, the number of minima, saddle points, and
maxima generally varies within 1 of the correct value (i.e., 2).

a) b)

c) d)

1

Figure 7. The boxplot summary of the distribution of the
number of minima, saddle points, and maxima, and the his-
togram of the estimated genus. The 4 panels pertain to the four
examples: a) dimpled sphere, b) torus, c) dimpled torus, and d)
2-torus.

However, not all of the values in that range are allowed. Eq. (4)
constraints the three numbers, because the first Betti number must
be even. This constraint reduces the uncertainty even further. Mean-
while, the main interest is in the value of the genus, which can be
computed from Eq. (5). The histogram of the genus is shown im-
mediately below the comparative boxplots in Figure 7. Interpreting
this histogram probabilistically, it can be seen that the most likely
value of the genus is zero. And, of course, that is the correct value.
Moreover, values of estimated genus as large as 2 are possible, but
less likely.

The remaining panels in Figure 7 show the analogous figures
for the torus (Figure 7b), dimpled torus (Figure 7c), and the 2-
torus (Figure 7d). The correct number of minima, saddle points,
and maxima for the torus is (1,2,1). The analogous numbers for the
dimpled torus and the 2-torus are (3,6,3), and (1,4,1), respectively.
The comparative boxplots in Figure 7, are all in agreement with
these numbers. It is worth noting that the spread of the boxplots
generally increases with the complexity of the underlying surface.

The distribution of the estimated genus for all four simulated
examples is also consistent with the correct values (Figure 7). The
most likely genus for the torus, dimpled torus, and 2-torus are 1,
1, and 2, respectively - the correct values. As with the number of
critical points, the uncertainty in the estimated genus increases with
the complexity of the surface. Whereas the genus for the dimpled
sphere varies between 0 and 2, the range for the 2-torus is 0 to 6.

As for the Bunny and Buddha examples, the true number of min-
ima, maxima, and saddle points is not known, and so, a comparison
of their distributions with the true values is not possible. The distri-
bution of estimated genus for the two examples is shown in Figure
8. The most likely value of genus for the Bunny is zero, i.e., the
correct value. However, that for the Buddha is 5, one less than the
correct value. The reason for this error is complex, and points at an
important issue discussed next.

Figure 8. The empirical sampling distribution of genus for
the bunny (top) and for Happy Buddha (bottom). The most
likely genus for these examples are 0 and 5 (not 6), respectively.

Recall that all of the surfaces examined thus far are contami-
nated by a zero-mean gaussian with σ = 0.1. In order to exam-
ine the sampling distribution of the genus for different noise-levels,
the Buddha example is analyzed with four different values of σ,
namely, 0.01, 0.05, 0.1, and 0.5. The results are shown in Figure 9.
First, note that the width of the sampling distribution of genus in-
creases with increasing noise level. This is a desirable feature of the
method, because one’s confidence in the inferred estimate ought to
diminish with increasing noise.

Focusing on the modes of the distributions, for the lowest noise
level (σ = 0.01), the most likely value of genus is 7, one higher
than the correct value. For σ = 0.05 the most likely genus is 6, i.e.,
the correct value. As σ is increased to 0.1 and 0.5, the most likley
value of genus falls to 5 and 4, respectively. The reduction of genus
with increasing noise is not surprising; as the noise level increases,
some of the smaller “holes” in the surface disappear, thereby re-
ducing the genus. The explanation of why the most likely genus is
larger than the correct value, for the lower noise levels, is related to
the choice of the parameters of the templates used for identifying
critical points; this issue is discussed in the next section.
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a) b)

c) d)

Figure 9. The empirical sampling distribution of genus
for the Happy Buddha for different levels of noise; σ =
0.01, 0.05, 0.1, 0.5, for a-d, respectively.

5. SUMMARY AND DISCUSSION

The Morse inequalities are reviewed. It is shown that when special-
ized to the case of a 2-dimensional surface embedded in 3 dimen-
sions, they place severe constraints on the topology of the surface.
Several examples are employed to show that all of the quantities
appearing in the Morse inequalities can be estimated directly from
point cloud data, thereby providing a statistical/probabilistic view
of the topology of the surface underlying the data. Empirical sam-
pling distributions are produced for the various topological entities,
all of which can then lead to traditional confidence intervals or hy-
pothesis tests of the topological parameter of interest.

In a statistical setting, i.e., where an object has been sampled
with some density, the notion of the “correct” value of its genus
is ambiguous, at best, because the estimated genus depends on the
scale at which the data is examined. The aforementioned “correct”
values are all based on a visual inspection of the true objects, not
the point cloud generated from them. Any attempt to extract genus
from point cloud data, by any method, must take into account some
notion of the scale of the features of interest. Methods based on
persistence [Bubenik et al. 2010] are no exception, because they
too involve a parameter (ε) which effectively controls the scale of
interest. In inferring genus, one must specify the typical size of the
homology loops, for example. Without some specification of the
scale of interest, the inferred genus will depend on how “closely”
the point cloud is examined. In the proposed method, there are sev-
eral parameters that control the scale of interest. All of them appear
in inferring the critical points of a function. For example, the step
and cusp templates discussed in section 2.3 all have parameters that
define how quickly S ′(h) increase or decreases, or how sharp the
cusp is expected to be. Furthermore, even after specifying these
quantities, one must still specify which steps or cusps in the time
series of S ′(h) are of interest; in the present work, this was imple-

mented by adopting a criterion which keeps only steps and cusps
with errors less than 1 standard deviation of zero (right column in
Figure 6). Relaxing or tightening this criterion will lead to a differ-
ent set of critical points, and a different distribution for genus. In the
simulated example, the typical size of the features is relatively un-
ambiguous, and so, the proposed method yields the correct genus.
But for the more complex examples such as the Buddha, the method
may predict the “wrong” genus (e.g., Figure 8, bottom panel) if the
scale of interest has not been specified correctly. It is also worth
pointing out that the choice of the scale and the noise level are in
fact confounded. As such, the spread of the sampling distribution
reflects uncertainty due to both noise and misspecification of scale.
The confounding nature of scale and noise are currently under in-
vestigation.

Although not shown here, we have found that the spread of the
sampling distribution (i.e., uncertainty) of the genus generally de-
pends on the orientation of the surface. This is expected, because
the height function depends on the orientation. So, it is possible to
orient the surface in a way that would allow for more precise es-
timates of the critical points. In other words, it is possible to add
another step to the proposed method, wherein the variance of the
distribution of genus is minimized across different orientations of
the point cloud. Such a rotation can also be used to identify a perfect
height function, in which case the Betti numbers can be computed
exactly, as opposed to being only bounded at the top. This idea will
be examined in a later publication.

It is also important to note that while we focus in this paper on
topology estimation, the critical points and indices of naturally de-
fined functions over the data (such as height functions) give more
than topological information: For example, for the dimpled torus
(Figure 1c), the topology is identical to that of a standard torus (Fig-
ure 1b), but the critical points of S ′(h) do give information about
the dimples, i.e., a geometric rather than topological feature of the
data set. The extra geometric information extracted from data via
Morse theory might be useful for some applications such as molec-
ular shape determination [Cazals et al. 2003].

In the examples considered here the goal is to identify the genus
of a 2-dimensional compact surface underlying 3-dimensional
point cloud data. Several generalization are possible. The dimen-
sionality of the embedding space, or of the “surface” (embodying
the underlying structure), can both be generalized. Of course, a sin-
gle number like genus will no longer suffice to define the topology
uniquely, but the set of Betti numbers does. In other words, if the
manifold of interest underlying the data has dimension larger than
2, then more parameters need to be estimated. From a statistical
point of view, the consequence of this increase in the number of
parameters is that more data will be required to estimate the pa-
rameters with precision.

The general formulation of Morse theory does not require the
underlying manifold to be compact. There are also extensions of
Morse theory that allow for degenerate critical points, as well
as extensions to manifolds with boundary, and to Morse func-
tions that take values in more general spaces than R (e.g., circle-
valued Morse theory where Morse functions are S1-valued) [Pa-
jitnov 2006]. The application of these more powerful topological
tools to data analysis is a fruitful frontier for exploration.
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