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Within the framework of c= 1 matrix models, we consider multi-matrix models, i.e. the quantum mechanics of multi-matrix 
models. A connection is established between a D-matrix model and a D-dimensional gas of fermions (bosons) for odd (even) 
values of D. A statistical mechanical analysis yields the scaling law for the free energy, and hence the susceptibility exponents for 
the various models. The exponents turn out to be positive for the multi-matrix models, suggesting that these could represent 
models of 2D gravity coupled to c > 1 matter. However, a lower-bound on the mass-gap exponents is found (i.e. an upper bound 
on the Hausdorff dimension) which may render this identification unlikely, Nevertheless, we find certain qualitative features 
which would be expected of a c> 1 theory. For instance, in addition to the positive susceptibility exponent, we find that whereas 
in the c= 1 case the density of states itself diverges as one approaches the critical point, in the D-matrix models various derivatives 
of the density of states diverge, with the order of the derivative depending on D. This qualitatively different behaviour of the 
density of states could be a signal of the conjectured "phase transition" at c = 1. 

I. Introduction 

Matrix models have recently become popular  as representations of two-dimensional  quan tum gravity coupled 
to matter. Various types of matrix models have been studied, and their correspondence with certain kinds of 
matter  coupled to 2D gravity elucidated. One of these is the hermit ian one-matrix model whose generic critical 
behaviour is that of  non-uni ta ry  matter  coupled to gravity [ 1 ]. A generalization is the case of mult i-matr ix 
models, the matter  content  of which is identified as uni tary with c < 1 [2,3 ]. Another  example is the case of a 
hermit ian one-matrix model, where the matrix is a function of a single cont inuous parameter, which has been 
identified with a model of gravity coupled to a single boson ( c =  1 ) [4 -7] .  In the former case attempts have 
been made to construct c> 1 models [ 8 ]. In the search for a matrix model representation of c>  1 matter it is 
more natural  to work in the context of the latter (i.e., t ime-dependent  matrices),  since one expects to increase 
the value of c by increasing the number  of matrices. 

Another  mot ivat ion  is to look for different kinds of critical behaviour. In the one-matrix case universality is 

a consequence of the fact that the critical behaviour is determined only by the behaviour of the potential near 
its critical point.  In the mult i -matr ix examples that we shall consider here, the potential is a function of several 
variables, whose behaviour  near the critical point  is the topic of singularity theory [ 9 ]. Given the fact that there 
exist different types of singularities (e.g., A, D, E), one would correspondingly expect different universality 
classes. 

Before proceeding to a review of the c =  1 case in detail, let us briefly ment ion  the general strategy adopted in 
refs. [4 -7] .  There the evaluation of the free energy of the matrix model was reduced to the calculation of the 
ground state energy of a system of N non-interact ing fermions in a one-dimensional  potential. In the N ~  o0 limit 
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(planar limit), the scaling law for the free energy about the critical point of the potential allows for the compu- 
tation of the string susceptibility exponent, which was found to be zero. The mass-gap exponent ustring was found 
to be bounded from below by zero. Numerical results were quoted to argue that this bound is saturated, i.e. that 
Vstnng = 0. Both of these results are consistent (up to logarithmic factors ) with the continuum KPZ analysis [ 10 ]. 

To compute the free energy of the D-matrix model, we find it necessary to appropriately constrain the matrix 
integration measure, after which the evaluation of the free energy of this constrained model reduces to the 
calculation of the ground state energy of a system of N non-interacting fermions (bosons) in D dimensions for 
D = o d d  (even). Since the ground state energy of a gas of non-interacting bosons is identically zero, the con- 
strained even-D models are trivial, and we shall henceforth consider only odd values of D. Here, the potential 
can depend on anywhere from one to D variables; defining this number as v, we show that for odd D and v, the 
scaling laws for the free energy result in positive susceptibility exponents. However, the lower-bound on ustri,g 
that we find, makes the identification of these models with those of string theory difficult. Nevertheless, as we 
shall see, our models are not entirely fruitless. 

In the next section we review the c=  1 case in detail. Section 3 deals with the reduction of the D-matrix model 
to a gas picture. The scaling laws for the free energy in the planar limit are obtained in section 4. The mass-gap 
exponent (inverse of Hausdorff dimension) is also treated here. We conclude with a discussion section in which 
we attempt an interpretation of our constrained matrix models. The different qualitative behaviour of the den- 
sity of states, in contrast to the c=  1 model, is interpreted as characterizing a "phase transition" at c=  1. 

2. c----- 1 rev iewed 

The partition function for a one-dimensional hermitian one-matrix model can be written as 

s Z =  ~q~(t) e x p - g  d tTr[~2( t )+V(~) ]  , (1) 

where g is related to the cosmological constant. The evaluation of the free energy of this model reduces to the 
computation of the ground state energy of N fermions at zero temperature, with the hamiltonian [ 4-7 ] 

) , : ,  2Nd2~ + g V(2ix/g) ' 

where 2i, i = 1, ..., N are the N eigenvalues of the matrix q~. The ground state energy of this non-interacting system 
of N fermions is simply the sum of the first N eigenvalues of the one-body hamiltonian: 

N 

Eo= y ei. 
i = 1  

Defining a rescaled energy e~ = eg/N, the normalization condition for the total number of particles 

el= 
o 

N= .t p(e) de, 
0 

becomes 

eF  
t *  

g= ~ p(e) de, (2) 
0 

where ev is the rescaled Fermi energy, and up to overall constants, one gets 
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p(e )=  f 1 ,je- v(~) da, (3) 

where the integral is between the turning points o f  V. Eq. (2)  implies that 

dg/deF =p (ev) • (4) 

The singularity of  the integral arises only f rom the behaviour  of  the potential  near its critical point, where one 
can Taylor  expand the potential  as 

V()],) = e c -  (,~,--~-e) 2"F .... 

where e c -  V(2¢) and V' (2c) = 0. The dominan t  contribution to the integral (3)  can be evaluated as 

P(eF) = i 1 . ~ ~ d x ,  (5) 

where r /=ac--ef ,  x-=2--2c,  and the upper  limit c is irrelevant, for its contribution to the integral is regular as 
ev--,ec. Then the dominan t  contr ibution to p is 

p (q )  ~ log r/, 

f rom which with eq. (4)  we see that  

g - & ~ q l o g q .  (6)  

The string susceptibility exponent  is read off  f rom 

q~ (g-go)  l--y, 

so f rom eq. (6)  one sees that up to logarithmic factors, y=O. 
To obtain the susceptibility exponent,  it is sufficient to consider only the planar limit (zeroth order WKB ), 

which is implicit  in the above analysis. For potentials with kth order maxima,  a similar analysis [ 6 ] yields 
y = - ( k - 2  ) / ( k +  2 ). We note that, regardless of  the order of  criticality in these models, 7 4 0. 

The mass-gap exponent  is found from ( x  2) ~ (n)2~>~p2, where ( n )  is identified with the "a rea"  of  the 
surface (i.e. number  of  vertices in the graph) .  Since g-gc  ~ 1 / ( n ) ,  then ( x  2) > / ( l o g ( n )  )2. This means that 
modulo  the logarithm, v/> 0. In re£ [ 5 ] it was argued, based on numerical  results, that  the angular excitations 
seem not to affect the lowest excitation (as in the hydrogen a tom) ,  and hence v = 0. 

3. D-mat r ixmode l s  

Here we shall show that  the vacuum energy of  a D-matr ix model (with the matrices tibK(t), K =  1, ..., D)  can 
be found as the ground state energy of  an N-body hamil tonian in D dimensions,  where the hamil tonian describes 
fermions (bosons)  for D odd (even) .  

Starting f rom a generalization of  eq. ( 1 ) to the D-matr ix  case, the corresponding hamil tonian describing the 
quan tum mechanics of  D matrices is ~ 

/~=  2AT,/OK~=I ,,j=~, ~ + T r V ( g ' / Z o ~ K ) ,  

~ Although there is some freedom in choosing the coefficients (i.e. the powers ofg and N) in this equation, the choice is partially 
dictated upon us - see footnote 3. 
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where the potential in general depends on all the matrices • K. Following ref. [ 5 ], the ground state energy can 
be obtained from the variational principle 

E -  min , ( (  - (v)  

where 

1 o 0 2 /N'~I/D g],  

and 

( ~ ) =  ~ f i  FI d~ 'z- 
K= 1 i,j 

As in ref. [ 5 ], this leads to 

E =  minx ( ( z H z )  ~, 
\ ( z z ) )  (8) 

with 

z(21 ..... 4 o) =A(2'  )...A (2o)~/(~ 1, ..., 2o ) ,  

where A (2if) is the Vandermonde determinant of the matrix q~ x and 

n ~  ~ [ 1 D / ~ '  2 ( N )  1/D 1 
,=1 2N~/O L ~ - ~ r l  + V(gl/2n2,) • 

K= 1 \ u  i / 
(9) 

The intermediate steps involved in going from (7) to (9) are similar to those of ref. [ 5 ], but here we outline 
the steps to illustrate the role of the Vandermonde determinants corresponding to the D matrices. Upon diagon- 
alizing all the D matrices with the same unitary transformation (see below), t/~ = UtAKU, where A K is diagonal 
in 2 x, we have 

([llql) -- fl-[K d(U)u(N)I -[ id ,~KA2(aK)~/2  K=I d(U)u(N) z]2()]. K) j=IH d)],K 

1 n 0 2 

In writing the Tr V(q~K) term as Z/u=1V(2~) one must diagonalize all the D matrices simultaneously, which 
simply means that they must all commute. This constraint amounts to the angular parts of all the matrices being 
equal. This, in addition to the form of the kinetic term, also motivates the consistent ansatz that the wave 
function qt may be a function of the eigenvalues only (see the paragraph below). As a result, since the arguments 
of the integrals are independent of the angular variables, the factor fd(U)utN) in the numerator cancels the 
same factor in the denominator. Then, upon absorbing the Vandermonde determinants into the qJ's, and par- 
tially integrating, we get 
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,~ D 01og~j ( ,~ f )~2+  2 V(gl/~,~i~)] 
(I l l , l / )  - -  f n K I ~ j d ~ K l ~  2 K=I j=l i=1 i=l 

i f  tiff - (Zz) K = , j = ~  

X ~ (K~__I 2~{--)~--~/.K2 - - ) ~ 2 D  1 02 Z F0210gA(Aff ) (010gA(Aff)~2]~ l ID  i=, L + ~ ] j j  +X2\gj  V(g,/2D)~,) ~ 

The two terms involving the log's cancel identically, leaving us with eqs. (8) and (9), as promised. 
Here 2~, i=  1, ..., N, is the set of  eigenvalues of  q~; we note that we can define the D-vectors 2 i=  (2], ..., 2~ ). 

The ansatz we have chosen is that the wave function ~, is a singlet of  D copies of a single U(N) ,  where the U(N)  
corresponds to the angular part of  each matrix. As a result, the symmetry of the resulting theory is U (N) and 
not U(N)  °. In other words, we require the angular parts of all the matrices to be equal, and hence there is a 
single U(N)  that acts on all the D matrices ~2. This is possible only if all the matrices commute with each other. 
It is important to note that this places a strong contrast on the interactions. This makes the identification of our 
models with a theory of 2D gravity non-trivial. Nevertheless, we shall elaborate on a possible interpretation in 
section 5. The wave function q/(2i), i=  1, ..., N, is symmetric under exchange of any two "coordinate" vectors 
2i and 2j since such a permutation is a U (N) transformation, and we have chosen a singlet wave function. Under 
such an exchange, due to the presence of the Vandermonde determinants, Z(2 ~, ..., AN) is clearly an antisym- 
metric (symmetric) wave function for D odd (even), and so the hamiltonian, eq. (9), correspondingly de- 
scribes a system of N non-interacting fermions (bosons) in D dimensions, in an external field described by the 
potential V. In the next section we will apply statistical mechanical techniques to this gas of particles to derive 
the scaling laws for the D-matrix models. 

In the path integral formulation (see Br6zin et al. [ 7 ] ), the Fermi statistics enters through the appearance, in 
the measure, of  a product of  Vandermonde determinants of  all the matrices, of  the form 

D 
H A ( q ) K ( 0 ) ) A ( ~ K ( T ) ) ,  

K= 1 

where the integration of the " t ime" variable runs from zero to T. This leads to an antisymmetrization of the 
final states with respect to the initial states. 

4. Scal ing  laws 

This section contains the derivation of the scaling laws near the critical point and the corresponding suscep- 
tibility and mass-gap exponents. 

We begin by reviewing the standard statistical mechanical analysis of  a D-dimensional gas of  particles (fer- 
mions or bosons) in an external field. To obtain the scaling laws, one needs the expression for the density of  
states which one obtains from 

N= ~ni ,  
i 

where ni is the occupation number of  the ith state. In the large-N limit, one writes 

N= f ~--~dl'n(e(p,q)) , (10) 

~2 Note that while the wave function does have the larger symmetry of U(N) D, the hamiltonian does not; the symmetry group in the 
theory is only U(N). 
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where d F i s  the volume element  in phase space, dF=dDq dO/), h is Planck's  constant, and e(p, q) - -pZ/2m + U(q) 
is the classical energy, n(e) is the appropr ia te  equi l ibr ium dis t r ibut ion,  at fixed temperature ,  depending on 
whether  the part icles are fermions  or  bosons. Since e(p, q) depends  only on the magni tude  p o f  p, we have 
d~p~zp °- ~dp = m [ 2m (e- U) ] tD-2)/2de" Since we are interested in the ground state energy of  this gas of  part i -  

cles, we consider  the zero tempera ture  dis t r ibut ion.  For  bosons  all the part icles are at e =  0, resulting in a zero 
total  energy. Since we have shown in the previous  sect ion that  the even-D matr ix  models  correspond to a gas of  
bosons, we see that  these models  do not  possess non-t r ivia l  scaling laws. Henceforth,  therefore, we shall special- 
ize to the odd-D matr ix  models,  i.e., a gas of  fermions,  where n (e)  = 1 for e < eF, and zero otherwise, where ev is 

the Fermi  energy. Then eq. (10)  can be wri t ten as 

( m'~ D/2 ~ 
Uoc \-~] J- de f dDq[e-U(q)](D--2)/2, 

0 £2 

where £2 is the classically allowed spatial  region (for  D = l ,  this would be the region between the turning poin ts ) .  

The densi ty of  states is found from 

N= i p(e)de, 
o 

(11)  

which gives 

(m'~D/2fdDq[e_U(q)](D-2)/2 p(e)oc \~51 
Q 

(12)  

The ground state energy of  the matr ix  hami l ton ian  (9)  is the sum of  the first N eigenvalues of  the single 

part icle  hami l ton ian  

H ( 2 ) =  1 ~2 ( N )  ' / °  
2N l/o 022 "[- V ( g l / 2 D 2 )  " 

Compar ing  with e =  - (h2/2m)02/0q21 - U(q), we identify (m/~/2) with N ~/D. To el iminate  N, and to make the 

g-dependence  explicit ,  we per form the rescaling ~3 
I/D 

e-~e=(g) e. 

Eqs. ( 11 ) and  (12)  then become 

g= i p(e)de, 
o 

(13) 

where eF is the rescaled Fermi  energy, and up to overall  constants,  

p(e) = f d O 2 [ e -  V(2) ] (D--2)/2 
£2 

(14)  

#s The elimination of N from ( 11 ), and the finiteness of e (i.e. renormalized energy ) as N~ oo, allows for the replacement of ( 1/D) with 
any other positive power which is less than, or equal to, (1/D); the choice of 1/D is one of convenience. However, having equal 
powers of N in the kinetic and the potential term is not by choice. This has an important ramification regarding the existence of a 
topological expansion in these models - see section 5. 
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where ~l, -~ g l / 2D q .  

All quantities of interest can be obtained from the density of states; for instance one can rewrite ( 13 ) as 

dg 
p(ev) = deF' 

from which one then obtains eF as a function of g:. ev(g).  In turn, we define the rescaled ground state energy as 

1 
E =  NI+I/----~- ~ E ek, 

k = l  

which in the large-N limit becomes, in terms of e, 
g 

1 
E =  g----TTT~ I e ( t ) d t ,  

0 

with t = g k / N ,  giving 

0__ (gl+WOE)=eF(g)  . 
Og 

From this equation one can get the scaling law for E in terms of that OfeF, as g approaches its critical value. The 
dominant part of the specific heat Coc 02E/Og 2 can be obtained from C ~  e'F(g) ~ p  -1 (eF(g)). Since g--gc ~ 1 / 
( n ) ,  where ( n )  is the mean number of vertices in the graph, if our models are to be identified with a world 
"surface" embedded in some space-time, then the Hausdorff dimensions ( l / v )  of these "surfaces" can be 
found from (x  2) ~ ( n )  2V>~p2. 

For the case when D = 1, eq. (14) reduces to eq. (3), from which we recover the c = 1 scaling law 

PD=I (r/) ~log q, 

i.e. y=0  and v = 0  (up to logarithms). 
For D>~ 3, the potential is a function of many variables whose number, v, varies anywhere from 1 to D. As we 

will see below, the scaling laws depend on both v and D. Since the scaling laws are determined primarily by the 
behaviour of the potential near its critical points, we appeal to singularity theory to provide us with the partic- 
ular form of such near-critical multivariable potentials. Although singularity theory is concerned mainly with 
complex functions of complex variables, there does exist, among others, an ADE classification of real functions 
of real variables. In the case of hermitian matrix models, it is the latter that shall occupy our interest. However, 
here we will mostly deal with some of the A-type singularities, for there exists a rich variety of critical behaviour 
even for this restricted set. We may treat the details of the D- and the E-series, and also higher-modality singu- 
larities (where there exist marginal perturbations) elsewhere. 

A remark about universality is in order. In the D =  1 case, where the potential is a function of only one vari- 
able, universality is a reflection of the fact that the potential near its (non-degenerate) critical point, can always 
be brought to a quadratic (or higher order, for the multicritical models) form by an appropriate coordinate 
transformation. Similarly, multi-variable functions can be brought to certain normal forms which are, in fact, 
the near-critical forms that the function can take, and these are classified by singularity theory. One would then 
expect a corresponding ADE-type classification of the universality classes of the multi-matrix models. 

We now continue on to the derivation of the scaling laws and the exponents. We shall consider potentials, 
within the A-series, with rotational invariance, in which case we can rewrite (14) as 

P(gF)  = J dr r v-1 [eF -- V(r)  ] ( D - - 2 ) / 2  , (15) 
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where we have dropped overall constants coming from coordinates on which the potential does not depend. 
Here r : =  22 + 22 +...22, 1 ~< v~< D, and Q is the region between the turning points in the radial direction. It is 
helpful to keep in mind the following particular forms of the potential, without any loss of generality: 

V(r) = r 2 - r 4 , 

which is an upside-down rotated mexican-hat potential and 

V(r) = (r 2 -  ½ )2, 

which is a regular rotated mexican-hat potential. The corresponding maximum critical points, re, and critical 
values, e¢, are (1/,,/~, ~ ) and (0, ~ ), respectively. We emphasize again that these are only examples that aid 
visualization; what follows holds in complete generality. 

The scaling laws correspond to the behaviour o f p ( e v )  a s  gv approaches the critical value of the potential, e¢. 
In contrast to the D = 1 (c = 1 ) case, where p itself is singular in this limit, eq. ( 14 ) does not behave in a singular 
manner for D >/3. However, we can still extract the dominant contribution to p in this limit by considering 
various derivatives ofp(ev) ,  with the order of  the derivative depending on D and v in general. Upon differen- 
tiating p (ev) an appropriate number of  times and Taylor-expanding the potential, it can be seen that the domi- 
nant contribution comes from the leading term in this expansion; to this order, the singular part comes from the 
near-critical limit of  the integral. 

For potentials of  the first type, differentiating the density of  states n = ( D -  1 ) /2  times gives 

rV_ldr 
P(n)(eF) = V/~F_V(r)" 

Near the critical point, we write x = r -  re, in terms of which 

f (X+rc)V_~d x 
PCn~(eF)= -ro X/eF-~c+x2" 

The dominant contribution is from the r~-1 term (if r~ ~ 0) in the numerator and comes from the upper limit 
of the integral, giving 

p~n) (r/) ~log r/, 

where q = ec-eF. Upon integrating n times, this becomes 

p(rl) ~rl(o--I )/2log r/, (16) 

since any non-zero integration constants that might have appeared are less dominant. We note that this result is 
independent of the number of variables in the potential, v. 

In the case when re = 0, which is the case corresponding to potentials of the second type, above, then the 
dominant contribution can be extracted from the ruth derivative of  p, where rn = D + v -  2 ) / 2, for odd ~. 

r0  

~ xv- ldx  p(")(r / )  = ~ ,  (17) 

where ro is the turning point at the outer rim of the potential. Since ro is not a critical point of the potential, it 
only contributes a regular term to the integral, and hence the singular part comes from the lower limit, giving 

p(m)(rl)~log rl. (18) 
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This equation has been derived from ( 17 ) by partial integration, for v odd. For v= even, no singularity results, 
as can be seen by integration by parts. Hence (18) gives, for odd v, 

p(r/) ~ q (O+v--2)/210g 0" (19) 

Qualitatively, the reason for the v-dependence in this equation, in contrast to eq. (16),  can be attributed to the 
difference in the manner  in which criticality is approached, between the two afore-mentioned types of  poten- 
tials. For  instance, in the upside-down rotated mexican-hat potential, the Fermi sea spills over the upper rim of  
the potential, whereas in the case o f  the regular mexican hat, no spilling occurs, since the region above e¢ is also 
bound. 

Up to now, we have considered only the specific case o f  the A ? type of  singularity, i.e., potentials which take 
the form V= x~ z + x2 2 + ... + x 2 near the critical point. In the case of  real singularities (potentials),  there is also 
the possibility o f  having a mixture of  + and - signs in front o f  the various terms. By considering such potentials 
with hyperbolic symmetry,  one can still define a "radial" coordinate, after which the calculation proceeds in 
exactly the same manner  as in the A ~- case, hence yielding the same scaling laws. 

Remaining within the set o f  rotationally invariant potentials, we can explore other types o f  critical behaviour. 
For s-critical potentials, where s -  1 derivatives o f  V(r)  vanish at the critical point, the dominant  part o f p  can 
be found directly from 

rc 

p(rl) ~ ~ dx  (X+rc)V- l (x ' - - r l )  (D-2)/2 
r l l /S  

For D = 1, this reproduces the result o f  ref. [ 6 ], i.e., 

ri ~ ~~,/,--1/2 
P(?~)D= 1 ~ d ~ 

_ _ ~ l / s  V I 

for s > 2. Here v ~> ( s -  2 ) / (s + 2 ). Further, we can consider the case of  D = 3, v = 1; in that case, the identity 

tells us that 

p ( q )  ~rl l/s+l/2 , (20) 

and v>~ - ( s + 2 ) / ( s + 3 ) .  We mention in passing that the same result also holds for v = 2  and v = 3  when s = 3 ,  
and for v= 2 when s =  4. These cases are sufficient to provide us with examples of  models with positive suscep- 
tibility, as we shall see below. 

The definition o f  the string susceptibility exponent, 7, can be written in terms of  the scaling of  the density o f  
states with the Fermi energy as 

p ( q )  ~ q  y/(I-7)  

Therefore, up to the logarithms which we shall discuss below, eqs. (16) and ( 19 ) give 

7 = ( D - 1 ) / ( D + I ) ,  7 = l - 2 / ( D + v ) ,  

for the upside-down and regular rotated mexican-hat potentials, respectively. Observe that the values of  7 for 
the two types of  potentials are identical. This is, again, a manifestation o f  universality. From eq. (20),  we see 
that our examples o f  D =  3 multi-critical models not only do not suffer from logarithmic corrections, but also 
have positive susceptibility exponents 

7 = ( s +  2 ) / ( 3 s +  2) , 
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in contrast to the c =  1 ( D =  1 ) case [6 ]. We note that all the D >  1 models have strictly positive susceptibility 
exponents, and negative lower bounds on the v's. Assuming that the angular contributions do not affect the 
lowest excitation (i.e. that the inequality is saturated),  as in the D =  1 case, the "surfaces" embedded in space-  
time would end-up having a negative Hausdorff  dimension. This suggests that we may not be dealing with a 
string moving in a space-t ime, or a model of  2D gravity coupled to c>  1 matter; however, we are still able to use 
these models as a laboratory for studying certain qualitative features which are expected of  the latter. 

5. Discussion 

As we promised in section 3, in addition to a general discussion, we will now try to put forth an interpretation 
of  the constraint that we placed on the angular variables o f  the matrices, namely, that they be all equal. Of  course 
this is a strong constraint which further obfuscates an interpretation of  our models in terms of  known theories 
of  matter coupled to 2D gravity. 

In the hamiltonian picture used here, this constraint arises from our requirement that all the matrices be 
simultaneously diagonalizable. This was necessary in order to write (7) as (8),  which is equivalent to the fact 
that our wave function is a singlet o f  D copies of  a single U ( N ) .  

One way of  imposing this constraint, at the path-integral level, is to introduce a delta-function into the inte- 
gration measure which equates the angular parts of  all the matrices. However, it is more transparent to impose 
the same constraint in a somewhat different manner  as delta-functions involving the commutator  o f  the matrices 
themselves. This has the advantage that it introduces an interaction between the matrices when raised into the 
exponent (action).  For  example, we can formally write ~t4 ~( [A, B] ) as fdA exp A tr( [A, B] )2, where A and B 
are any two matrices, and A is a Lagrange multiplier. This would introduce interactions of  the type tr(ABAB) 
and tr (AABB) in the action. These vertices resemble the four-vertices appearing in the matrix-model represen- 
tation of  the Ising model [ 3 ]. The consequence is that we are dealing with an Ising-like model where the spins 
carry additional quantum numbers. It is important  to study interactions o f  this type in order to better under- 
stand the matter  content of  this theory. 

7> 0 models have been obtained in the context o f  " t ime"- independent  one-matrix models; however, those 
were identified with theories of  matter coupled to several world sheets touching each other [ 8 ]. This interpre- 
tation was a consequence o f  (tr A 2)2_type interactions in the lagrangian. In contrast, the absence o f  such inter- 
actions in our models (see the single trace in the hamiltonian, above eq. (7)  ) implies that we are dealing with a 
single object (perhaps not a string) coupled to c >  1 matter. The fact that there is no overlap between our values 
of  ~ and those of  ref. [8 ] (with the possible exception o f  7= ½ ) also means that our models are distinct from 
those of  ref. [ 8 ]. It is to be understood that at the level of  the partition function, y > 0 is only indicative of  c >  1 
matter coupled to world sheet; there is numerical evidence that for c>  1, 7> 0 and v > 0 [ 11 ]. 

A few words about the presence o f  the logarithms in our scaling laws: In the D =  1 ( c =  1 ) case, this has been 
linked to the presence o f  a tachyon which happens to be massless in one dimension [ 12 ]. The logarithms that 
we find would also appear to indicate that we are still at c =  1; however, we point out that the c =  - 2 theory [ 13 ] 
also has such logarithms. This calls for a better understanding of  the origin of  these logarithms. In the somewhat 
different context of  topological gravity, albeit with c =  1 features, the logarithm has also been attributed to the 
SL(2, C) invariance o f  the sphere [ 14]. There the free energy was expanded in powers of  the cosmological 
constant in such a way that the coefficients were identified with the (virtual) Euler characteristic of  the moduli  
space of  Riemann surfaces with punctures. However,  it is not clear if such an expansion is allowed in the c>  1 
region. The logarithmic behaviour o f  ( x 2 ) ,  which is of  the same origin as that of  p, however, is still typical o f  
smooth or Liouville surfaces [ 11 ], since this is predicted by Liouville perturbation theory [ 15 ]. 

~4 We thank I. Kostov for suggesting this particular way of writing the constraint. 
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Let us mention, in passing, that the 1 / N  expansion in the quantum mechanical D-matrix models, treated here, 
does correspond to a topological expansion. Although, at first sight, counting the contribution o f  the propagators 
and the vertices in the graphs (dual to the triangulation) would suggest a total contribution o f  [ N t~/o) ]z, where 
Z is the Euler character o f  the "surface" being triangulated, this is spoiled by the fact that each face in the graph 
still contributes an N, and not N (l/D). It is easy to see from the hamiltonian, however, that there is a rescaling 
o f  the matrices (consistent with the criteria mentioned in footnote 3) and the coupling g which does resurrect 
the 1 /N  expansion as a topological one. 

It is often conjectured that some sort o f  a "phase transition" is to occur at c =  1. Our models allow us to give a 
slightly more accurate meaning to this expectation. Specifically, whereas in the D =  1 ( c =  1 ) theory the density 
o f  states itself diverges at criticality, in the D >  1 models nth order derivatives o fp  diverge, where n depends on 
D (see (16) and (19) ). This is reminiscent of  the usual definition o f  a phase transition. 

We end by recapitulating some of  the main features o f  these models which we have presented and, to various 
degrees, supported: 

( 1 ) The existence of  an ADE classification o f  the universality classes. 
(2) The existence o f  a constraint which identifies the D-matrix models with a D-dimensional gas of  fermions/  

bosons. 
(3) That the even-D models portray no scaling behaviour. 
(4)  That there are some c~> 1 features; e.g. positive susceptibility, a logarithmic growth of  ( x  2) with "area",  

and a behaviour o f  the density o f  states which is reminiscent o f  a phase transition at c = 1. 
(5) That  there are also some stringy and some non-stringy features, e.g. the existence of  a topological expan- 

sion, and a negative Hausdorff  dimension (if  the angular excitations are ignored), respectively. 
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