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ABSTRACT

Three spatial verification techniques are applied to three datasets. The datasets consist of a mixture of real

and artificial forecasts, and corresponding observations, designed to aid in better understanding the effects of

global (i.e., across the entire field) displacement and intensity errors. The three verification techniques, each

based on well-known statistical methods, have little in common and, so, present different facets of forecast

quality. It is shown that a verification method based on cluster analysis can identify ‘‘objects’’ in a forecast and

an observation field, thereby allowing for object-oriented verification in the sense that it considers dis-

placement, missed forecasts, and false alarms. A second method compares the observed and forecast fields,

not in terms of the objects within them, but in terms of the covariance structure of the fields, as summarized by

their variogram. The last method addresses the agreement between the two fields by inferring the function

that maps one to the other. The map—generally called optical flow—provides a (visual) summary of the

‘‘difference’’ between the two fields. A further summary measure of that map is found to yield useful in-

formation on the distortion error in the forecasts.

1. Introduction

Variograms and correlograms are both invariant un-

der additive intensity errors. Under multiplicative inten-

sity errors, however, only the correlogram is invariant;

that is, a correlogram captures displacement (and shape–

size) error only, not additive or multiplicative intensity

errors.

It is now clear that the quality of forecasts of gridded

parameters such as precipitation or temperature cannot

be evaluated by a simple gridpoint by gridpoint com-

parison of the forecast field with the observed field. This

issue has been thoroughly discussed in the literature,

and a summary is provided in Ahijevych et al. (2009).

Also discussed in that work are three datasets designed

to diagnose the inner workings of a number of verification

techniques for a proper assessment of spatial–gridded

forecasts. Among those techniques, three have been ex-

amined previously by the authors of this article; they are

referred to as the cluster analysis (CA) method (Marzban

and Sandgathe 2006, 2008; Marzban et al. 2008), the

variogram (VGM) method (Marzban and Sandgathe

2009a), and the optical flow (OF) method (Marzban and

Sandgathe 2007, manuscript submitted to Wea. Fore-

casting, hereafter MSI; Marzban and Sandgathe 2009b,
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manuscript submitted to Wea. Forecasting, hereafter

MSII). The three methods have little in common and, so,

examine completely different facets of forecast quality.

The CA method can be called object oriented in the

sense described by Baldwin et al. (2002), Brown et al.

(2004), Bullock et al. (2004), Chapman et al. (2004),

Davis et al. (2006a,b, 2009), Ebert and Gallus (2009), and

Ebert and McBride (2000). Given that it relies on the

identification of spatially compact objects, it is suited for

fields consisting of mixed (continuous and discrete) dis-

tributions, such as precipitation fields. The VGM method

is closely related to ideas put forth by Gebremichael

et al. (2004), Germann and Joss (2001), Germann and

Zawadzki (2002), Harris et al. (2001), and Zepeda-Arce

et al. (2000). It is designed to compare two fields in terms

of their covariance structures. And the OF method is

related to techniques examined by Bowler et al. (2004),

Du and Mullen (2000), Gilleland et al. (2010, manuscript

submitted to Wea. Forecasting), Hoffman et al. (1995),

and Keil and Craig (2007, 2009). A classification of all of

these techniques (and more) has been attempted in

Gilleland et al. (2009).

Not all of the above works deal with the verification

problem per se, but when they do, the primary task is to

first assess some scalar measure of forecast error and,

then, decompose it into components that may have some

diagnostic value. Some of the more emphasized com-

ponents have been the displacement error, intensity

error, and size error. The three methods presented here

assess the decomposition of error differently. The CA

method is based on the notion of a distance between

clusters in the forecast field and those in the observed

field. The distance may be measured either in the Eu-

clidean space spanned by x and y coordinates, or it may

be measured in the three-dimensional space consisting

of the Euclidean plane (x, y) and the intensity of the field

(denoted z). The CA method performed in (x, y) assesses

only displacement error, while the (x, y, z) analysis gauges

a combination of displacement and intensity error. The

precise combination is determined by a metric introduced

in the three-dimensional space. In this paper, the majority

of the analysis is in (x, y, z) and, so, the results convey

a combination of displacement and intensity errors.

The VGM approach addresses the decomposition dif-

ferently. As shown by Marzban and Sandgathe (2009a),

a comparison of two fields in terms of their variograms

can be performed in two different ways: one is sensitive to

both displacement and intensity error, while the other is

insensitive to displacement error. It is also possible to

compute a similar quantity, called the correlogram, which

is insensitive to intensity. The bulk of the analysis in this

paper is based on a version of the variogram that is

sensitive to both displacement and intensity errors, but

an example of the correlogram is also given. Examples

of the variogram that is insensitive to displacement are

given in Marzban and Sandgathe (2009a).

The OF method is also capable of assessing displace-

ment and intensity errors. As shown in MSII, the sim-

plest OF model assesses a combination of the two errors,

but a simple generalization allows for gauging the two

components separately. Again, the OF analysis done

here is based on the simple model, but examples of the

decomposition can be found in MSII.

The next section describes the three datasets and is

followed by a section reviewing the three verification

methods. When appropriate, each method is applied to the

three datasets, and the results are presented. The paper

ends with a summary of the conclusions and a discussion.

2. The data

The three datasets examined here are described in

Ahijevych et al. (2009). The first, referred to as the

geometric set, consists of an observed field that involves

a single elliptical object. The object has low and constant

intensity on its periphery, but high and constant intensity

in its interior regions; the object is asymmetric in the

sense that the region of high intensity is not at its center.

The geometric set consists of five forecast fields, with

varying amounts of displacement and/or spatial stretch-

ing applied to the observed field. These five forecast

fields are referred to as geom001–geom005, and for the

sake of completeness are briefly defined in Table 1,

where arrows indicate the directions of the displacement.

The second dataset, called the perturbed set involves

a realistic observed precipitation field and seven forecast

fields that are generated by applying varying amounts of

displacement and intensity scaling to the observed field.

The forecast fields are labeled as pert001–pert007, and

the underlying transformations are succinctly displayed

in Table 2.

The third dataset pertains to precipitation observed on

nine dates in 2005: 26 April; 13, 14, 18, 19, and 25 May;

and 1, 3, and 4 June. Each observed field is accompanied

by three 24-h forecast fields from three formulations of

the Weather Research and Forecasting (WRF) model,

referred to as wrf2caps, wrf4ncar, and wrf4ncep. Details

of these models can be found in Ahijevych et al. (2009).

TABLE 1. The five geometric forecasts and their definitions. The

numbers denote the magnitude of shift.

geom001 50 /
geom002 200 /
geom003 125 /, bigger

geom004 125 /, wrong orientation

geom005 125 /, very big (i.e., overlapping)
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3. The three methods

Each of the methods has multiple variations, only one

of which is examined here. Moreover, each method has

user-dependent parameters that are also fixed here.

Detailed information about these choices can be found

in the corresponding references. In this section, each

method is described briefly, and an example of its

‘‘output’’ is presented. The example is one of the fore-

casts from the perturbed dataset involving only a shift.

The CA method identifies clusters or objects in the

combined field of the forecast and the corresponding

observation. The clusters are then assayed for their

number of grid points that belong to the observed field,

and the number of grid points belonging to the forecast

field. If these two numbers are comparable, indicating

significant overlap of the two fields, then the cluster is

identified as a hit; otherwise, the cluster is a false alarm

or a miss, depending on which of the two numbers is

larger. The details of this matching criterion are dis-

cussed in Marzban and Sandgathe (2008) and Marzban

et al. (2008). From the numbers of hits, misses, and false

alarms, one computes the critical success index (CSI) as

a measure of performance.1 It is important to point out

that the entire clustering procedure can be performed in

a multidimensional space that includes, but is not limited

to, the two spatial coordinates. In fact, the results re-

ported here are based on three coordinates: the two

spatial coordinates, plus intensity. In the current analysis

the last coordinate has been weighted so as to contribute

a third as much as the spatial coordinates; again, this

choice is user dependent.

Cluster analysis techniques may be divided into two

major classes: those wherein the number of clusters, NC,

is specified a priori, and those for which the number is

variable. An example of the former is k-means clustering,

while an example of the latter is hierarchical agglomer-

ative clustering (Everitt 1980). The latter begins by par-

titioning the field into n clusters, where n is the number of

grid points. The technique then finds the closest clusters

and joins them into a larger cluster. The procedure con-

tinues until there exists a single cluster consisting of all

grid points. As such, NC varies from n to 1. If the verifi-

cation is performed on a large number of clusters, then

one can argue that verification is done on a small scale. By

contrast, large-scale verification is done when the number

of clusters is small. By computing CSI for every value of

NC, one obtains a ‘‘CSI curve,’’ which effectively sum-

marizes the forecast quality as a function of scale.

As an illustration of the technique, the top panel in

Fig. 1 shows an example of partitioning a joint observed–

forecast field into 100 clusters. The clustering algorithm

used to generate the clusters in Fig. 1 is the aforementioned

TABLE 2. The seven perturbed forecasts and their definitions. The

numbers denote the magnitude of shift.

pert001 (3 /, 5 Y)

pert002 (6 /, 10 Y)

pert003 (12 /, 20 Y)

pert004 (24 /, 40 Y)

pert005 (48 /, 80 Y)

pert006 pert003 3 1.5

pert007 pert003 2 1.27 mm

FIG. 1. (top) An example of partitioning a joint observed–

forecast field into 100 clusters, and (bottom) the CSI curve from the

CA method. The forecast is pert002. Each error bar is the central

90% interval.

1 The reasons for selecting CSI as the measure of performance

have been addressed in Marzban and Sandgathe (2006). CSI does

have a number of ‘‘defects,’’ such as not being a measure of skill or

being misleading in rare-event situations (Marzban 1998), but

these problems are not important in the current application.
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k-means algorithm; in its simplest form, it assumes that

the clusters are elliptical in shape. The algorithm used in

the CA method begins with the result of the k-means

algorithm, but further clustering is performed with the

hierarchical agglomerative algorithm. The CSI curve

corresponding to the forecast pert002 is shown in the

bottom panel of Fig. 1. The error bars are the central

90% interval, generated via bootstrapping. In this par-

ticular instance, one may conclude that the forecasts are

perfect (CSI 5 1) on large scales corresponding to 30 or

fewer clusters. On smaller scales, where the field is par-

titioned into more than 30 clusters, CSI falls off mono-

tonically. For this example, the CA is performed only on

the spatial coordinates (i.e., excluding intensity); other

examples that also include intensity are examined below.

The central quantity in the VGM method is the vario-

gram, an empirical plot of the mean-squared difference

between the field values at two points, as a function of

the distance separating the two points (Cressie 1993).

The mean is computed over all points separated by

a fixed distance. Consequently, the variogram assesses

variations in the field as a function of scale. In spatial

statistics, it is used to summarize the covariance structure

of a field, while in image processing it gauges the texture

of an image. For verification purposes, the variogram is

useful because it allows a comparison of a forecast field

and an observation field, as a function of scale. Marzban

and Sandgathe (2009a) propose two versions of the VGM

method; in one, the variogram is computed across all grid

points in a field. However, if a field consists of a mixed

continuous-discrete quantity, such as precipitation, then

it also makes sense to compute the variogram across only

nonzero grid points in the field. It can be shown that

a performance measure based on the former variogram

assesses forecasts in terms of all the components of error

(displacement, intensity, and size). The latter variogram

is invariant under global displacements (i.e., shifts), and

so, it is insensitive to displacement errors. In this paper,

only the former variogram is computed, because as

mentioned in the introduction, these verification tech-

niques are intended for (nondiagnostic) model com-

parison. The final ‘‘product’’ of the procedure is a plot of

the difference between the variogram of the forecast

field and that of the observed field, denoted ‘‘delta

variogram.’’ If the delta variogram overlaps the hori-

zontal line at y 5 0, that would indicate that the forecasts

are ‘‘perfect’’ (as far as texture is concerned) at all

scales. The top-left panel in Fig. 2 shows the variograms

for the observed field (black) and the forecast pert006

(red), and the right panel shows the delta variogram.

More specifically, each variogram is actually a sequence

of boxplots summarizing the sampling distribution of the

difference between the observed and the forecast vario-

grams, based on 50 bootstrap samples.2 Recall that

pert006 corresponds to a global-spatial shift and a mul-

tiplicative error in intensity; the delta variogram displays

the difference between the two variograms. The fact that

the boxplots do not cover the horizontal line at 0 implies

that the two variograms are statistically distinct.

As mentioned above, the variogram is affected by dis-

placement and intensity errors. By contrast, the corre-

logram is insensitive to intensity errors. Its definition is

already given in Marzban and Sandgathe (2009a); suffice

it to say that it is a two-dimensional generalization of the

Pearson correlation coefficient and, so, is insensitive to the

magnitude of the field. As such, the difference between

two correlograms, called delta correlogram here, assesses

only the displacement error. The bottom row in Fig. 2

shows the corresponding correlograms (left) and the delta

correlogram (right). Although the difference between the

correlograms in the left panel is not visually clear, the delta

correlogram makes it abundantly evident that there is a

difference; the difference is only on large scales (i.e., only

the boxplots for large x values do not overlap the y 5 0

line). This is what one would expect, because a global

shift (underlying pert006) is indeed a large-scale effect.

The final method is based on the idea that any field can

be mapped to any other field, and that certain features of

the map can be used as verification measures. The map is

often referred to as the optical flow (OF). If the OF field

is allowed to be completely general, then one can use

nonparametric methods for estimating the map. Such

methods are generally numerically intensive and do not

allow analytic solutions. Keil and Craig (2007, 2009)

have examined this approach. An alternative is to im-

pose certain constraints on the map that allow for an

analytic solution. Of course, because of the constraints,

the formalism is more restrictive than the nonparametric

approach, but it does provide for better illustration. One

popular constraint is from Lucas and Kanade (1981),

where it is assumed that the OF field is locally constant.

This approach is examined for verification purposes by

MSI and MSII. The result of the procedure is a 2D field

of vectors, one per grid point, mapping the forecast to

the observed field. At each grid point, the OF vector is

computed from the field values at all neighboring grid

points. The extent of the neighborhood is quantified by

a window of size W. The magnitudes and directions of

2 The sampling performed here assumes independence of the

field values at different grid points. This assumption is clearly in-

valid for most meteorological fields. Marzban and Sandgathe

(2009a) discuss this issue and propose two alternative sampling

schemes that do allow for spatial (and temporal) correlations in the

data: subsampling (Politis et al. 1999) and the block bootstrap

(Politis and Romano 1994).
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these vectors—specifically, their joint histogram—can

be used as a summary measure for distortion error (i.e.,

size, displacement, and intensity error combined). A

‘‘peak’’ displayed in the joint histogram indicates a co-

herent, large-scale transformation, that is, an overall shift

of the forecast field relative to the observed field. Figure 3

shows the joint histogram for pert001, and will be dis-

cussed further, below. For now, recall that the magnitude

of the shift generating pert001 is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

32 1 52
p

5 5.8, and the

angle is 360/2p atan(�5/3) 5�598. These numbers are

entirely consistent with the joint histogram in Fig. 3. This

example, along with other simulated cases examined in

MSII, suggest that the joint histogram is a useful tool in

summarizing the OF field.

FIG. 2. (top left) Variograms for an observed field (bottom points), and a corresponding forecast field, pert006 (top points). (top right) The

difference between the two variograms. (bottom panels) The corresponding correlogram.
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One of the limitations of the assumption of a locally

constant OF field is that the method will produce

unphysical OF fields if the amount of shift between an

observed and a forecast object is large relative to the

scale of interest. In the Lucas–Kanade formulation of

OF, the scale is specified by the size of the window, W,

over which the OF is computed. In other words, for

sufficiently small W, the OF field will appear to be un-

physical. This is not a defect of the methodology, but it

simply reflects the physical requirement that sufficiently

distant objects cannot be, and should not be, mapped to

one another, for they may in fact be distinct objects, that

is, a miss or a false alarm. It is also true that increasing

the window size will render the OF field more physical;

after all, although two distant objects should not be nec-

essarily matched on small scales, it is more reasonable to

match them on larger scales. In short, an OF field is

highly dependent on the scale over which it is computed.

To conclude this section, it is worth pointing out that an

important difference between the three methods is in the

way scale is quantified: in CA, the number of clusters in

a field addresses the scale. In the VGM method, the scale

is gauged in terms of the distance between two points,

and in the OF method, it is quantified through the size of

the window for which a single OF vector is computed.

4. CA results

Given that the geometric dataset contains only one

unambiguous cluster, the CA method is not a natural

method. The resulting CSI curves (not shown) all begin at

CSI 5 1 for NC 5 1, and drop abruptly to zero for larger

numbers of clusters. This is consistent with the fact that

the fields do not have a wide range of scales (again, be-

cause each field consists of a single unambiguous object).

The perturbed cases provide for more insight into the

method. Figure 4 shows the CSI curves (without the

error bars, for visual ease) for the seven cases. Recall

that the first five cases correspond to increasingly larger

shifts in the forecasts relative to the observed field. Also

recall that the only errors in these five forecasts are

spatial, not involving changes in intensity. For the

smallest shifts (i.e., pert001 and pert002), the CSI curves

are constant at CSI 5 1. This can be understood by

noting that the current CA method is based on clustering

in three dimensions: two spatial coordinates plus in-

tensity. The equivalence of the CSI curves at CSI 5 1

simply means that the spatial component of the error

is sufficiently lower than the intensity component so as

to not affect performance. In other words, the perfect

forecast of intensity dominates the imperfect spatial

structure of the forecast field. The notion of ‘‘perfect’’

forecasts requires more qualifications, which are pre-

sented in the discussion section.

For larger shifts (pert003) the CSI is 1, but only for

NCs less than 70. Said differently, on smaller scales at

which the field can be resolved as having 70 or more

clusters, forecast quality is no longer perfect. This pat-

tern continues for even larger shifts (e.g., pert004), for

which the CSI drops below 1 for NCs larger than 20. For

pert005, the drop in CSI occurs at NC 5 10. In short, for

larger shifts, the imperfection in the forecast can be

detected at even larger scales. This is a desirable be-

havior of CSI curves.

Larger shifts also cause the CSI curve to fall off with

NCs more drastically. In fact, the drop in CSI is larger

for larger shifts. This simply confirms that the CSI is

FIG. 3. The joint histogram summarizing the OF field mapping the

observed field to the forecast field pert001.

FIG. 4. The CSI curves for the seven perturbed forecasts.

1462 W E A T H E R A N D F O R E C A S T I N G VOLUME 24



negatively affected by displacement errors, as it should

be. Similarly, CSI is negatively affected by intensity er-

rors, as evidenced by the lower CSI curve for pert006 and

pert007, relative to pert003. It is interesting to note that

the CSI curve for pert006 (corresponding to a shift plus

a multiplicative intensity error of 1.5) is higher than that of

pert007 (corresponding to a shift plus an additive intensity

error of 21.27 mm), but one cannot conclude that the CA

method is more or less sensitive to additive or multipli-

cative errors, in general, because such a conclusion would

also have to be contingent on the relative magnitude of

the additive and multiplicative intensity errors.

Figure 5 shows the CSI curves for the nine dates during

spring 2005, for the three NWP forecasts (wrf2caps,

wrf4ncar, and wrf4ncep). It can be seen that wr2caps and

wrf4ncar are comparable across all scales; although the

sampling variations of these curves are not shown, paired

t tests indicate that the differences are not statistically

significant, even when the point estimates (i.e., the

curves) appear to be different. As for wrf4ncep, on small

scales with NC . 10, it can be better or worse than

wrf2caps or wrf4ncar depending on the date. As such,

its relative performance is difficult to assess. On larger

scales with NC , 10, it appears to be no better than

wrf2caps or wrf4ncar. In short, no particularly simple

pattern can be inferred from these nine dates; apart from

the possibility that wrf4ncep is generally more variable

than wrf2caps or wrf4ncar. A comparison of the reflectivity

FIG. 5. The CSI curves for the nine dates during spring 2005. The three curves in each panel correspond to wrf2caps, wrf4ncar, and wrf4ncep.
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forecasts from these three models, across 30 days, has been

performed by Marzban et al. (2008).

5. VGM results

The effects of a global shift on a variogram can be seen

in the top two panels of Fig. 6. Consider the case of a

50 gridpoint shift, first (geom001). Evidently, the only

region where the boxplots do not overlap the horizontal

line at zero is on larger scales (i.e., about 1800 km). On

smaller scales, the variogram has significant overlap with

the horizontal line at y 5 0. This behavior is exactly what

one would expect, because a global shift is clearly a

large-scale change. The geom002 panel in Fig. 6 shows

the effects of an even larger shift of 200 grid points. One

might expect an even more pronounced large-scale ef-

fect, but according to Fig. 6, there is no significant dif-

ference between the observed and the forecast fields.

The resolution of this ‘‘paradox’’ is in the realization that

a shift of 200 happens to lead to a forecast that is a mirror

image of the observed field (at least with regard to the

spatial location of the object). It is easy to show that

a variogram is invariant under such transformations. The

reason the variograms of the two fields are not exactly the

FIG. 6. The forecast variogram minus the observed

variogram (i.e., delta variogram) for the geometric da-

taset: geom001 to 005. The boxplots summarize the

sampling distribution based on 50 bootstrap trials.
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same is that the object itself is asymmetric, breaking the

invariance of the variogram. However, this is not of

practical concern, because it is unlikely to come across a

realistic forecast field that is a mirror image of the ob-

served field.

The geom003 and geom005 panels in Fig. 6 differ

mostly in the magnitude of the variogram difference. This

is consistent with the fact that the only difference between

the underlying forecasts is the size of the forecast object.

Finally, the geom004 panel resembles the geom001 panel.

In other words, the transformation generating geom004

leaves the variogram invariant. This is, again, an artifact

of the manner in which geome004 is generated.

The variograms for the perturbed dataset are equally

easy to interpret. The panels pert001 through pert005

in Fig. 7 show delta variogram for shifted forecasts of

varying degrees. It is clear that the difference between the

forecast and observed variogram is only at the larger

distances, and this is precisely what one would expect,

since a global shift is in fact a large-scale transformation.

The last two panels in Fig. 7 also convey what one would

expect from changes in intensity: if the forecast intensity

is multiplied by a positive number, then the variogram

shifts to higher values, and if the intensity is reduced

uniformly by some number, then the variogram is reduced

by some amount. In particular, pert007, which includes

FIG. 7. As in Fig. 6, but for the perturbed dataset.
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both a displacement error and an additive error in in-

tensity, has a delta variogram that reflects these errors

accordingly: on smaller scales (,1500 km), the delta

variogram is below zero, reflecting a reduction in intensity

of 1.27 mm, but on larger scales, it is above zero, as a result

of the spatial component of the error in the forecast.

As for the spring 2005 dataset, the delta variograms

are shown in Fig. 8. The forecasts are from wrf2caps

(black), wrf4ncar (red), and wrf4ncep (blue). On 26 April

(Fig. 8, top left), wrf4ncar is clearly better than either

wrf2caps or wrf4ncep, and this is true of all scales. How-

ever, on scales larger than about 1500 km, wrf2caps

FIG. 8. Delta variogram for the spring 2005 cases. The forecasts are from wrf2caps (black), wrf4ncar (red), and wrf4ncep (blue). The panels

are arranged as in Fig. 5.
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is inferior to wrf4ncar and wrf4ncep. By contrast, on

13 May (Fig. 8, top middle), wrf4ncar is far worse than

wrf4ncep on these large scales, and wrf2caps is statisti-

cally equivalent to wrf4ncar. On one day (18 May), all

three forecasts are statistically equivalent. This is also the

case on 1 June, except on larger scales (.2500 km) where

wrf4ncep is worse. Another notable point is that on 3 June

(Fig. 8, bottom right), wrfncep is worse than the other two

models, over all scales. Other specific observations can be

made for each date, but no simple pattern emerges across

the nine dates. One may simply note that wrf2caps and

wrf4ncar are generally comparable, but wrf4ncep is more

variable—the same conclusion noted in the CA analysis,

above. A similar analysis but across 30 days has been

performed in Marzban and Sandgathe (2009a).

6. OF results

As mentioned previously, the Lucas–Kanade OF for-

mulation can produce unphysical OF fields under certain

conditions, for example, when a shift is large compared to

the window size W. In this paper, only three values of W

are examined: W 5 20, 40, and 60. This range is suffi-

ciently wide to expose some discussion-worthy features in

the perturbed dataset and in the spring 2005 data. How-

ever, the shifts underlying the geometric dataset are much

larger than can be captured by this range of W values. For

this reason, the OF fields associated with the geometric

dataset will not be presented here. A more complete

analysis should examine a wider range for W, but there

exist complications, some of which are addressed in the

discussion section here and in MSII. More general ver-

sions of the OF method exist that are capable of handling

such situations (Keil and Craig 2007, 2009).

Figure 9 shows the resulting joint histograms for the

perturbed dataset, based on W 5 40. First, recall that

(Table 2) all of the transformations involve a shift in

a direction 2598. All of the joint histograms in Fig. 9 do

indeed have a peak at 2598. As such, the OF method

correctly captures the direction of the shift. However,

for the largest shift (pert005), there are two peaks in the

joint histogram. As for the magnitude of the OF vectors

(i.e., displacement error), it is clear that the peak of the

joint histogram is consistent with the magnitude of the

displacement error only for small shifts. For example,

the magnitude of the largest shift (i.e., for pert005) is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

482 1 802
p

5 93.3, but neither of the peaks in the joint

histogram is around that value. This is an example of the

aforementioned unphysical result. Again, this is not

a failure of the method, but rather a reflection of the

requirement that two distant objects may, in fact, be

a miss and a false alarm and, so, should not be mapped to

one another. In fact, on the scale established by W 5 40,

the larger shifts underlying pert004 or pert005 are suf-

ficiently large to justify that interpretation.

Finally, the last two cases in the perturbed dataset

(pert006 and pert007) yield joint histograms that resemble

that of pert003. It may appear that the OF method does

not capture the intensity error, but that is not true. In

general, the OF is affected by intensity errors of any

kind, additive or multiplicative (MSII). The reason the

joint histograms for pert006 and pert007 are similar to

that of pert003 is that the displacement error (common

to both pert006 and pert007) overwhelms the intensity

error. Recall that the OF fields presented here reflect

a combination of displacement and intensity errors.

All of the above conclusions are contingent on the

scale at which the OF is computed; the window size for

Fig. 9 is 40. An examination of the joint histograms for

both smaller and larger window sizes (not shown) in-

dicates that the conclusions are generally robust across

different scales. The only difference is that the amount

of shift at which the method begins to ‘‘fail’’ increases

with window size. This makes sense, because the answer

to the question of how far should two objects be before

one declares them as different objects (not the same

object, but shifted) depends on the scale of interest.

As for the spring 2005 dataset, all the joint histo-

grams have been examined for wrf2caps, wrf4ncar, and

wrf4ncep, for all nine dates, and at three window sizes

(20, 40, and 60). There exist too many figures to re-

produce here; however, they generally fall into three

broad classes. In one class the joint histograms are bi-

modal; these are reminiscent of those found in the per-

turbed dataset with large shifts. They suggest that on

these scales the forecasts are of extremely poor quality.

The dates that fall into this class are 13, 14, 18, and 19 May.

The top row in Fig. 10 shows the joint histograms for the

three models for 19 May.

The joint histogram of one date in particular, 25 May,

shows signatures of a shift (Fig. 10, middle row). The

shift is most pronounced in wrf4ncar, and least notice-

able in wrf4ncep. The direction of the shift is about 858

(i.e., due north), and the magnitude is about five grid

lengths, (i.e., about 20 km). The remaining joint histo-

grams (1–4 June) all appear to be uniformly distributed

across all angles and magnitudes. As such, the forecasts do

not appear to be shifts of the observed fields. The bottom

row in Fig. 10 shows the joint histogram for 2 June.

Comparison of the joint histograms of the three

models across different scales (W 5 20, 40, and 60) in-

dicates the same conclusions found for the CA and

VGM methods, namely that wrf2caps and wrf4ncar are

similar, and that wrf4ncep is more variable.

MSII also consider the OF field resulting from the

average of all the OF fields across multiple days. This
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type of an average OF field is a useful summary of

forecast quality; however, it is not shown here because it

is apt to be unreliable, given the small number of days

(i.e., nine).

7. Summary and discussion

Three verification methods are applied to several

datasets. The data are designed to assess how the methods

measure global displacement and intensity errors. The

three methods have little in common and, so, together

provide a more complete picture of forecast quality.

One method is based on cluster analysis (CA) and parti-

tions a gridded field into ‘‘objects,’’ while another method

examines the spatial–covariance structure of the field

itself in terms of the variogram (VGM). A third method

infers a map relating the forecast and observed fields,

where the map is based on ideas from optical flow (OF).

FIG. 9. The joint histogram summarizing the OF field for the seven perturbed cases.
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The findings can be summarized as follow: When ap-

plied to forecasts that are a shifted version of an ob-

served field, the CA method implies that larger spatial

shifts lead to lower CSI curves across all scales, but

the drop in CSI is more exaggerated on smaller scales.

Moreover, both multiplicative and additive errors in

intensity lead to lower CSI values across all scales. The

VGM method is also sensitive to both spatial shifts

and errors in intensity. Specifically, larger spatial shifts

manifest themselves as large-scale changes in the vario-

gram (i.e., for larger x values), and both multiplicative

and additive errors in intensity simply shift the vario-

gram across all scales. By contrast, the OF method is

mostly insensitive to intensity errors and is more suited

to detecting spatial errors. In particular, the joint his-

togram of the magnitude and direction of the OF vectors

reflects the magnitude and the direction of spatial shifts.

With regard to forecasts from wrf2caps, wrf4ncar,

and wrf4ncep, a comparison across nine days during

spring 2005, using the three verification methods, yields

a complex set of conclusions that are difficult to sum-

marize. However, it does appear to be the case that

wrf2caps and wrf4ncar produce comparable forecasts

across all scales; wrf4ncep’s forecasts are different, and

FIG. 10. The joint histograms for the three models for three of the nine dates: (top) 19 May, (middle) 25 May, and (bottom) 1 Jun: (left)

wrf2caps, (middle) wrf4ncar, and (right) wrf4ncep.
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also more variable across the nine dates. These findings

can be understood by noting that wrf2caps is the same

general model formulation as wrf4ncar, yet run at higher

resolution. Therefore, while generally similar, wrf2caps

does appear to resolve features better in some cases

based on the CA and VGM methods. On the other hand,

wrf4ncep is based on a different model formulation and

performs differently, although not necessarily worse

than the other two models.

There exist numerous issues in all three methods that

legitimately place them in the realm of research. For

example, in the CA method, a forecast that is generated

by a small shift of the observed field will lead to CSI 5 1;

that is, it will deem the forecast to be perfect. One

explanation, already offered above, is that the perfect

forecast of intensity dominates the spatial component

of error. But the issue is more complex and requires

a qualification of the notion of perfect. One may wonder

how the forecast can be deemed perfect when it is

known to be a shifted version of the observed field. The

resolution follows when one notes that CSI is a measure

of performance after the clusters in the two fields have

been matched with one another in some optimal sense.

Those that are matched lead to hits, and the remaining

clusters lead to false alarms or misses. In other words,

CSI does not assess the quality of the match itself. Said

differently, displacement errors and/or intensity errors

are not embodied in CSI. These components can be

computed. For example, the average distance between

the clusters can be used to asses the quality of the match.

Given that distance in the 3D space has a spatial and an

intensity component, one can even view them as mea-

sures of displacement and intensity error, separately,

and plot them as a function of NC. One difficulty is in

deciding how the size of two clusters should effect

a measure of distance between them. Even armed with

an unambiguous and reasonable notion of distance, it is

still unclear how the false alarms and misses should be

incorporated, because for such objects the very notion of

a displacement error is ill-defined.

The VGM method, too, has several issues that are the

subject of research. For instance, it was mentioned above

that one can compute a variogram for nonzero grid points

only. One can even compute it for nonzero grid points

that have been set to a constant intensity value. All of

these variograms measure the covariance structure of the

field, but it is unclear what they say within the verification

context. After all, they can be interpreted as different

summary measures of forecast quality. This ambiguity in

summarizing forecast quality also manifests itself in the

OF method. For example, as shown here, the joint his-

togram is suitable for highlighting global spatial shifts in

a forecast relative to an observed field. But this may be

less useful in realistic situations, because it is unlikely that

a forecast field is simply a shifted version of an observed

field. Moreover, the joint histogram, by virtue of being

a 3D quantity, does not naturally lend itself to pre-

sentation on different scales; a scalar summary measure

would be more amenable, because one would be able to

simply plot it as a function of W. All of these issues are

currently under investigation.
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