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Abstract

The National Severe Storms Laboratory has developed algorithms that
compute a number of Doppler radar and environmental attributes known to be
relevant for the detection/prediction of severe hail. Based on these attributes
several neural networks are developed for the prediction of the occurrence and
the size of severe hail. Performance is assessed in terms of multi-dimensional
(i.e., nonscalar) and scalar measures. It is shown that the respective networks

outperform their existing non-network counterparts.

1 Introduction

Neural Networks’ (NN) ability to represent a wide range of models is usually accompanied
by one disadvantage, namely their tendency to overfit data. Overfitting occurs when a
model captures the statistical noise in the data rather than the underlying signal. A num-
ber of popular methods for identifying a model that overfits utilize several independent
data sets; these methods fall under the general classes of split-sample and resampling
methods. Examples are cross-validation, jack-knifing, and bootstrapping (Bishop 1996).
In these methods, one or more of data subsets are employed for estimating the parameters
of the NN (i.e., training), and the remaining (validation) subsets are employed for deter-
mining the optimal complexity so as to prevent overfitting. These methods are employed
to identify the onset of overfitting. Of course, knowledge of the overfitting model allows

for the identification of the optimal model (that does not overfit).



Additionally, there exist means of restraining the overfitting problem. For example,
the introduction of a weight-decay term into the error function can restrict the overfitting
problem. Indeed, a weight-decay term can be arranged to preclude overfitting altogether
but only at the cost of rendering the NN linear. Using methods of Bayesian inference it is
possible to arrive at a weight-decay term that is optimal in the sense that the NNs ability
to overfit can be limited but without compromising its nonlinearity. The details of this
Bayesian approach are presented in Marzban and Witt (2000a,b), and Marzban (1998).

The development of a NN model for severe hail prediction can be divided into two
sub-tasks: One of developing a model that predicts the probability of severe hail, and
another that predicts the size of severe hail, given that severe hail has occurred or is
expected to occur. Further, a NN for the prediction of size alone can be developed in two
independent ways: One can develop a NN that predicts the size of hail in some physical
unit (e.g., inches or millimeters), or one can assess the probability of belonging to some
size range. The data suggests that severe hail reports fall naturally into three different
classes, corresponding to coin-size, golfball-size, and baseball-size, in an ordinal fashion.
As such, it is possible to assess the probability of a severe hail report belonging to each
of these three classes. For size prediction, the former approach falls in the domain of
regression, while the latter is an example of a classification problem. Thus, there will
be three NNs considered herein, and will be referred to as the Probability of Severe Hail
(POSH) NN, the regression NN, and the classification NN, respectively.

In what follows, the data and the methodology are further outlined, and scalar and
multidimensional (e.g., distribution-based) measures of performance are set forth to gauge

the performance of the NNs.

2 Data

The input variables provided to the NNs include a mix of Doppler-radar derived predictors
along with several predictors representing the near-storm environment. The predictors
available for the POSH NN are listed in Table 1, and those for the regression and classifi-
cation NN are given in Table 2. The radar predictors consist of four based on reflectivity

data, including cell-based vertically-integrated liquid (Johnson et al. 1998) and the severe



hail index (Witt et al. 1998a), as well as two based on velocity data, storm-top diver-
gence (Witt and Nelson 1991) and midaltitude rotational velocity (Witt 1998). The base
reflectivity and base height predictors correspond to the lowest-altitude 2D component of
each storm cell detected by the Storm Cell Identification and Tracking (SCIT) algorithm
(Johnson et al. 1998). The near-storm environment predictors include four based on ther-
modynamic data and two based on kinematic data. The vertically-integrated wet-bulb
temperature predictor is computed by integrating the wet-bulb temperature profile from
the surface to the height of the wet-bulb zero. For this study, all the near-storm environ-
ment predictors were calculated from sounding data. For each individual ”storm event”
analyzed!, a single sounding was used, with the most representative sounding being cho-
sen from among the available candidates. Factors affecting the choice were proximity to
the midpoint, in time, of the storm event, being in the ”inflow sector” of the event, and
being reasonably close (within 400 km) to the event. Incomplete soundings that did not
allow for the calculation of all the environmental predictors, and soundings that appeared
to be contaminated by convection, were disqualified.

The verification data comes from Storm Data. Because Storm Data is a collection
of severe weather reports, the minimum hail size in this study is 19 mm (0.75 inch).
There are numerous problems associated with using Storm Data for verifying radar-based
algorithm predictions (Witt et al. 1998a,b). For predicting the occurrence of severe hail,
the primary concern is the need to infer "no” observations from the lack of a hail report
in Storm Data. Because this inference is dubious in rural areas, a population density filter
is used. For prediction of maximum hail size, the primary concern involves the possibility
that any given hail report is not representative of the maximum size being produced by
the storm (at the time of the report). To minimize the impact of this possibility, the
analysis was restricted to the maximum size observed per hailstorm (Witt 1998).

Different methods were used for relating severe hail reports to algorithm output (i.e.,
the predictor variables) for development and testing of the different NNs. For the POSH
NN, algorithm output was generated for a number of volume scans for each storm event

that was analyzed. Hail-truth files were produced for each storm event, and a scoring

LA ”storm event” is defined as a continuous period of time (up to 24 hours long) when convective
activity is occurring within 230 km of a radar site.



Table 1: The 14 inputs of the POSH NN, and two additional predictors (f) not employed
as NN inputs.

Z
s

Description

Storm cell azimuth

Storm cell range (km)

Maximum reflectivity (dBZ)

Base reflectivity (dBZ)

Base height (km)

Cell-based Vertically Integrated Liquid (VIL; kg(m)~2)
Severe Hail Index (SHI)

Midaltitude rotational velocity (m/s)

Storm-top divergence (delta-V in m/s)

Volume Coverage Pattern (VCP)

Height of the wet-bulb zero (km mean sea level [MSL])
Height of the melting level (km MSL)

Height of the -20 C level (km MSL)
Vertically-integrated wet-bulb temp

Wind speed at the Equilibrium level (m/s)
Storm-relative flow at the -20 C level (m/s)
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Table 2: The 9 predictors of the regression and classification NNs, and 6 additional
predictors () not employed as NN inputs.

No. Description

11 Date

2+  Time (UTC)

3t Hail size (mm)

4 Cell-based VIL (kg(m)?)

3 SHI

6 Storm-top divergence (delta-V in m/s)

7 Midaltitude rotational velocity (m/s)

81t  Storm cell range (km)

9t VCP

10 t Geographic region (see Figure 1)

11 Height of the wet-bulb zero (km MSL)

12 Height of the melting level (km MSL)

13 Vertically-integrated wet-bulb temp

14  Wind speed at the equilibrium level (m/s)
15 Storm-relative flow at —20° C level (m/s)
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Figure 1: Map showing the different geographical regions listed in Table 3.

program was run to relate severe hail reports to algorithm output using a 20 minute time
window (see Witt et al. 1998 for additional details). For algorithm output not associated
with severe hail reports (i.e., the inferred "no” observations), a population density filter
was applied at a threshold of 100 per 4 km?. For the POSH NN, individual storm cells
where identified via the SCIT algorithm.

For development and testing of the NNs that predict maximum hail size, a 20 minute
time window was used to relate the predictor variables to the maximum reported hail size
(per storm?). For the radar-based predictors, the maximum value within the time window
was used, whereas for the near-storm environment predictors, an average value was used.
Since a single sounding was used for each severe event, the only environmental predictors
that actually required averaging across the 20-min time window was the storm-relative

flow (due to changes in the storm motion vector). If the largest reported hail size for a

2For the hail size NNs, storm cells where identified manually. Because the sample size used to develop
these NNs is much smaller than the sample size used for the POSH NN, manual analysis was done to
minimize errors.



Table 3: Summary of the 130 storm events analyzed. A POSH case corresponds to an
individual SCIT detection (on a volume-scan by volume-scan basis). See Figure 1 for a
definition of each region.

Region No. events No. hailstorms No. reports No. POSH cases
Western U.S. 19 31 45 1048

High Plains and S Plains 35 179 465 3356

N U.S. and Midwest 22 93 249 7624

SE U.S. and FL 36 152 355 14638

NE U.S. 18 113 232 10891

Total 130 568 1346 37557

storm occurred when the storm was in the radar’s cone-of-silence?® or at ranges > 230km,
or when no radar data was collected, then that storm was not included in the development
and testing of the hail-size NNs.

In situations where there are multiple reports of the same maximum hail size for
a storm, the report corresponding to the time period when the storm appeared to be
weaker was used, since these radar characteristics were indicative of the minimum strength
necessary to produce the observed maximum hail size.* For example, suppose one is using
VIL to predict maximum hail size. Then, if there are two reports of golfball-size hail with
a storm, and the VIL is 50 for one report and 60 for the other, it is reasonable to assume
that a VIL of 50 is the representative value associated with golfball-size hail for this storm.
This condition (using the weaker period) only applies to multiple reports where all the
predictors have been measured within the time window, i.e., the storm-top divergence or
midaltitude rotational velocity predictors are not “missing” due to range folding. In cases
where one (or more) of the periods had missing data, the period(s) without missing data
was used.

The Hail Detection Algorithm (HDA) and other algorithms® in the Severe Storm
Analysis Package® were employed to compute the NN input values for 130 storm events

from across the U.S. (Table 3), on which 568 severe hailstorms were observed. The 130

3For the development of the hail-size NNs, a storm is considered to be in the radar’s cone-of-silence if
its reflectivity at the highest elevation angle is > 50(dBZ).

4Storm strength was determined by a composite of the four radar-based predictors in Table 2.

5Specifically, the SCIT algorithm, the Mesocyclone Detection Algorithm (Stumpf et al. 1998) and the
Upper-level Divergence Algorithm.

6The Severe Storm Analysis Package is the name given to the entire group of National Severe Storm
Laboratory (NSSL) severe-storm-analysis algorithms.
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Figure 2: The distribution of reported hail size.

storm events were selected to produce a data set with broad geographic (Figure 1) and
seasonal diversity. The distribution of maximum reported hail sizes (from 550 hailstorms)
is shown in Figure 2. The common practice of reporting hail size using familiar circular
or spherical objects (e.g., various coins or balls) is clearly evident, as reports tend to
be clustered along discrete sizes. The highest frequency corresponds to dime, nickel and
quarter (coin) size hail (19 - 25 mm), golfball size hail (44 mm) and baseball size hail (70
mm). It would appear that few hail reports are actually measured to obtain a precise
reading of their size, and that most hail sizes are estimated.” Hence, one must assume
that a certain amount of “rounding-off” error exists in the observations, and this error

appears to increase as hail size increases.

"This statement is based on the assumption that the true hail-size distribution is continuous in nature.



3 Bayesian Neural Network

All nonlinear regression and classification models can overfit data; overfitting occurs when
the nonlinearity of a model allows it to fit a data set or a decision boundary to such high
accuracy that the fit is driven by the statistical fluctuations in the data. Consequently,
such a model has no predictive capability. The true cause of this phenomenon is the
finiteness of the sample size, and it occurs mostly when the model is allowed to be highly
nonlinear.

It is possible to restrain overfitting if the NN weights are prevented from becoming
too large. The question is then “How large is too large?” The magnitude of the weights
can be constrained by introducing a weight-decay term into the error function that is to
be minimized. The question then becomes one of determining the optimal value of the
coefficient of this term. It is for this purpose that techniques of Bayesian inference can be
employed. Additionally, bootstrapping will be employed to identify (and thereby avoid)
the onset of overfitting. In its simplest form, one repeatedly trains with subsamples of
the data, and the optimal NN is selected to be the one with the lowest average error over
the unused subsamples. From the variance (over the subsamples) of the validation errors

one can construct a confidence interval for the performance of the NN.

4 Methodology

Three quantities are to be produced by the three NNs: POSH, severe hail size, and the
probability of belonging to one of three classes of hail size. Since the first and the last

deal with a classification problem, they require the minimization of cross entropy
1 1 9
S = N > ltlogy(z,w) + (1 — t)log(l — y(z,w))] + ag > w?,
while the appropriate error function for the regression NN is the mean square error
1 2
MSE = < Yl - y(z, )P,

where z is the vector of inputs (predictors), w is the vector of the weights, t is the target
value that is to be estimated by the output y(x,w), N is the sample size of the relevant data

set (training, validation, etc.), and « is the weight-decay coefficient. The minimization



of these error functions assures that the output nodes have the correct interpretation, be
it size or probability. The number of output nodes for the POSH NN is 2 (for event and
nonevent), 1 (size) for the regression NN ;| and 3 (one for each class of hail size) for the
classification NN.

The number of predictors available for the development of the various NNs is 14 for
the POSH NN (Table 1), and 9 for the regression and classification NNs (Table 2). For
the development of the NNs, it was deemed unnecessary to include predictors designated
with a f.

The potential for the storm-top divergence and midaltitude rotational velocity predic-
tors to be "missing” due to range folding actually calls for the development of two POSH
NNs; one NN to make forecasts when all 14 inputs are available (NN1 in Figure 3), and
another NN to make forecasts when only 12 predictors are available (NN2 in Figure 3).
As such, the general prediction of POSH would involve the conjunction of NN1 and NN2
(NN1+NN2). The regression and classification NNs deal with missing data in the same
fashion (i.e., they both actually consist of two NNs). However, unlike the regression and
classification NNs, which perform best in this dual-NN mode, it was found that the POSH
NN with only 12 inputs (NN2), based on all the cases in the data set, outperforms the
combination of NN1 and NN2. This would seem to indicate that storm-top divergence
and midaltitude rotational velocity do not provide any useful information in assessing
POSH. This was confirmed by comparing NN1 with NN3, which is a 12-input NN based
on the same number of cases employed in the development of NN1. Further experimenta-
tion with fewer input nodes suggests that nothing is gained by employing subsets of the
predictors as inputs.

The number of hidden nodes (on one hidden layer) was determined via bootstrap-
ping. As expected, what is gained by employing the Bayesian procedure for inferring the
strength of the weight-decay term () is that no significant loss of performance is found
even for a larger number of hidden nodes. In other words, the Bayesian method yields a
range in the number of hidden nodes within which the NN’s performance is insensitive to
the precise number of hidden nodes.

For the POSH NN, the number of available cases is 37,557; however, as described

below, the behavior of base reflectivity suggests a simple preprocessing rule that in turn
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Figure 3: The affect on sample size of excluding predictors from the POSH NN.

reduces the number of cases to 31,560. The sample size for the regression and classification
NNs is 550. In all the NNs the respective data sets were randomly partitioned into training
and validation sets according to the 2/3-rule in bootstrapping with replacement, i.e. 2/3
of the cases are used in training, and the remaining 1/3 are employed for validation.
Finally, the linear correlation coefficient, r, between the various predictors themselves
is important in ascertaining the collinearity among the inputs. Identifying collinear inputs
(i.e., a pair of inputs with a large r) and the exclusion of one member of the pair as an
input to the NN can reduce the likelihood of overfitting the data. The most collinear
pair of predictors in Table 1 are (3,4) and (12,13) both with » = 0.93. Figure 4 shows
the scatterplot for the first pair. In addition to partially illuminating the reason for
the collinearity, namely that one predictor is the upper-bound for the other, this figure
also suggests a natural and simple pre-processing rule: in particular, all cases with base
reflectivity < 40(dBZ) are excluded from the training process. For evaluation purposes,
such as observation is assigned the prior probability for such an event (i.e., 9/5939),
because only 9 out of 5939 cases are associated with severe hail. The exclusion of either
member of correlated pairs was found to lead to inferior performance, and so, no collinear
predictors are excluded as inputs to the NNs. The finding that the inclusion of both

members of a correlated pair improves performance is reflective of the imperfect correlation

10
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Figure 4: The scatterplot between two highly correlated predictors in Table 1. The
black circles are associated with non-occurrence of severe hail, while the red circles are
associated with the occurrence of severe hail.

between the members (i.e., r # 1).

As for the predictors in Table 2, the pairs (11,12) with » = 0.83, followed by the pair
(12,13) with r = 0.70 are the most correlated predictors. However, neither of these r’s is
sufficiently large to justify the exclusion of either member of either pair. As a result, no

predictors were excluded as input nodes.

5 Performance Measures

Both scalar and multi-dimensional measures are employed to assess performance. For
the regression NN, scatterplots and residual plots, and scalar measures based thereupon
will be employed. For the POSH and the classification NNs, performance is gauged
with ROC diagrams, distribution plots, attributes diagrams (including reliability, and
refinement), and scalar measures based thereupon. For the definitions of these measures

consult Marzban and Witt (2000a,b). The four possibilities are as follows:

‘ Scalar Multi-dimensional
Categorical | Heidke Skill Score ROC Diagram
Probabilistic | Ranked Probability Score Attributes Diagram

11



6 Results

To better understand the relation between the individual predictors (predictors) and the
predictand (e.g., hail size and the occurrence of severe hail) it is useful to compute the cor-
responding linear correlation coefficients, r (Figure 5). As compared to the environmental
predictors, it can be seen that the radar-based predictors are generally better correlated
with the respective predictand. Within the error-bars, predictors 1 and 10 from Table 1,
and predictors 1, 2, 8, 9, and 11-13 from Table 2, appear to be completely uncorrelated
(linearly) with the respective predictands. However, as discussed below, it was found that
all of the predictors are nonlinearly correlated with the respective predictands.

A few experiments were performed to identify the best set of predictors. In one
experiment, only the radar-based predictors were used, whereas in another experiment,
only the environmental predictors were employed. It was found that the NN with the
lowest validation error is the one trained on both sets of predictors. Therefore, even
though the environmental predictors have a negligible linear correlation with hail size,
they do contribute significantly as inputs to the (nonlinear) NN. In other words, although
several predictors have a low linear correlation coefficient with the predictand, an NN
with those predictors outperforms an NN without them.

Figure 6 shows the training and the validation errors for NN1 (one of the POSH NNs;
Figure 3) for a range of number of hidden nodes; in this case, it can be seen that 12 is the
optimal number of hidden nodes, since at that point the validation error begins to rise.
Similar plots for NN2 suggest 20 as the optimal number of hidden nodes. In the same
fashion the regression and classification NNs are found to be optimal with only 2 hidden

nodes.

6.1 The POSH NN

Figure 7 displays numerous multidimensional measures of performance for the POSH NN.
The top two figures are discrimination diagrams; ideally one would expect the two curves
to have distinct peaks with minimum overlap between them. It can be seen that the
NN (left) has peaks that are more distinct than the existing algorithm, i.e., the Weather
Surveillance Radar-1988 Doppler (WSR-88D) HDA. In fact, the latter shows no peak in

12
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Figure 5: The linear correlation coefficients between the various predictors in Table 1 and
the occurrence of severe hail (top), and the predictors in Table 2 and the size of severe
hail (bottom). The standard errors are shown as error bars.
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Figure 6: Training and validation errors for NN1 for a range of number of hidden nodes.
Clearly 12 is the number of hidden nodes beyond which the NN overfits data.

the (red) curve corresponding to the occurrence of severe hail. As such, the NN better
discriminates between the occurrence and non-occurrence of severe hail. The middle
figure shows the ROC curve for the two algorithms, again for the validation set; clearly,
the NN curve (black) is always above the WSR-88D HDA curve (red). Recall that an
ROC curve is a parametric curve of POD versus the false alarm rate (not ratio) as the
probability threshold varies from 0 to 1. Therefore the NN outperforms WSR-88D HDA
for all range of probability thresholds placed on POSH. The bottom diagrams are the
attribute diagrams with the refinement curves superimposed thereupon. Again, clearly
the NN outperforms the WSR-88D HDA in terms of reliability and refinement.

These multidimensional diagrams can be distilled to scalar measures. Table 4 com-
pares the performance of the two algorithms in terms of a number of scalar measures.
Cross entropy is the appropriate error function for a classification algorithm, because the
estimated parameters then coincide with the maximum likelihood estimates. It is a prob-
abilistic, scalar measure because it is computed from the estimated probabilities. Lower
values of cross entropy imply higher performance. The Critical Success Index (CSI) and
the Heidke Skill Score (HSS) are scalar measures that are nonprobabilistic, for they are
computed from a contingency table. POD and FAR are the Probability of Detection and
the False Alarm Ratio, respectively. ROC refers to the area under the ROC curve (Figure

14
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Measure NN WSR-88D HDA
Cross entropy | 27 44

POD 68 62

FAR 22 26

CSI 57 51

HSS 70 64

ROC 97 94

CON 5.4 6.7

REL 0.14 0.37

Table 4: Scalar measures of performance (in %) for the POSH NN and WSR-88D HDA
for one validation set.

7, middle); for a random classifier ROC=0.5, and for a perfect classifier ROC=1.0. CON
refers to convolution and is the area of the overlap of the distribution plots (Figure 7, top);
for a random classifier it is 1, and is zero for a perfect classifier. REL is the mean square
error of the reliability curve (Figure 7, bottom) about the diagonal line; a perfect classifier
would have REL=0, and there is no upper-bound to it. Evidently, the NN outperforms
the WSR-88D HDA in terms of all the measures of performance.

6.2 The Regression NN

Table 5 shows the training and validation errors for the four bootstrap trials of the NN,
NSSL’s Warning Decision Support System (WDSS; Eilts et al. 1996) HDA, and the WSR-
88D HDA. It can be seen that not only does the NN have training and validation errors
that are lower than those of the WDSS and WSR-88D HDA, they are also more clustered.
In other words, the NN consistently outperforms the WDSS and WSR-88D HDA in terms
of both mean square and mean absolute error of the forecasts. The average improvement
in the mean square errors is 20% and 33% for the training error (compared to the WDSS
and WSR-88D HDA, respectively), and 13% and 27% for the validation error. The average
improvement in the mean absolute errors is 8% and 17% for the training error, and 5%
and 14% for the validation error.

Figure 8 (left) shows the scatterplot of the NN, the WDSS HDA and the WSR-88D
HDA for one of the bootstrap trials. From the general pattern of this figure, it is evident
that the NN outperforms both the WDSS HDA and the WSR-88D HDA. Clearly the NN
provides a better fit to the data than either of the existing HDA algorithms. Also shown

16



Training Validation
Trial | NN WDSS HDA WSR-88D HDA | NN  WDSS HDA WSR-88D HDA
Mean Square Error (10 %in?)
1 3616 4703 5568 4093 4188 5190
2 3711 4528 5494 3868 4713 5412
3 3883 4750 o741 3321 4044 4666
4 3385 4316 5090 4643 5353 6628
Mean Absolute Error (10~%in)
1 44 .4 49.4 55.3 48.7 49.7 53.8
2 45.9 49.4 54.9 48.4 49.6 55.0
3 47.6 50.6 96.2 42.5 46.2 51.2
4 44.2 48.5 53.3 48.8 52.4 59.8

Table 5: The mean square and mean absolute training and validation errors of the regres-
sion NN, WDSS HDA, and the WSR-88D HDA for 4 bootstrap trials.

are the regression fits to the corresponding plots. It can be seen that whereas the NN’s
fit produces a diagonal line of slope 1, the WSR-88D HDA slope falls short of that ideal
value. This means that if MSE is the measure of error (or agreement), then on the average
there is near-perfect agreement between NN-predicted size and the actual size (i.e., there
is no overall bias); by contrast, the WDSS HDA and the WSR-88D HDA-predicted sizes
are typically higher than the actual size.

An examination of the residual-plots (Figure 8, right) is also informative. Evidently,
the NN displays far less scatter about the horizontal line than either the WDSS HDA or
the WSR-88D HDA does. As such, the NN’s predictions are more accurate than those of
the WDSS HDA or the WSR-88D HDA.

6.3 The Classification NN

The classification NN is assessed in terms of ROC, discrimination, refinement, and at-
tributes diagrams. The former requires the introduction of a probability threshold, and
so, will be treated last. The discrimination diagrams for the three classes are displayed
in Figure 9. It can be seen that the class 1 (coin-size hail) forecasts clearly discriminate
between the three classes; the distribution of class 1 observations is peaked to the right,
while those of the other two classes are either flat or peaked to the left. This is a de-
sirable result, although ideally one would want one curve peaked to the right and two

curves peaked to the left. By contrast, class 2 (golfball-size hail) forecasts display less
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Figure 8: The scatterplot (left) and residual plot (right) of the NN (black), the WDSS
HDA (red), and the WSR-88D HDA (green). For visual purposes the regression fits to
the scatterplots are also shown. Based on the slope of the regression fits, it is evident
that the better algorithm (i.e., with a slope ~ 1 for the scatterplot and slope ~ 0 for the
residual plot) is the NN, followed by the WDSS HDA and the WSR-83D HDA.

discriminatory capability. These forecasts discriminate between class 1 and class 2 events,
and between class 1 and class 3 (baseball-size hail) events, but not between class 2 and
class 3 events. Finally, class 3 forecasts are quite discriminatory, but with an interesting
twist; they derive their discriminatory capability not only from the identification of class
3 observations, but also from the identification of observations that do not belong to class
3.

Several facets of the quality of the forecasts can be assessed through attributes dia-
grams. Figure 10 shows these diagrams for forecasts belonging to each of the three classes.
It can be seen that the reliability of nearly all the forecasts is within statistical limits of
perfect forecasts (i.e., the diagonal line). The error bars are 95% confidence intervals
due to sampling. The horizontal line corresponds to forecasts that have no resolution,
and the bisector of the angle formed by it and the diagonal marks the locus of forecasts
with no skill (i.e., Brier Skill Score=0). The shaded area defines forecasts that contribute
positively to skill. Therefore, it can be seen that in addition to being highly reliable, all
the forecasts also contribute positively to skill.

Although the probabilities are all highly reliable, the range of the forecasts is quite
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Figure 9: Discrimination diagrams for class 1 (top), class 2 (middle), and class 3 (bottom)
forecasts for one validation set.
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Figure 10: The attributes and refinement diagrams for the class 1 (top), class 2 (middle),
and the class 3 (bottom) forecasts. Also shown are the 95% confidence intervals due
to sampling. The curve consisting of the squares is the refinement diagram, the hashed
region corresponds to forecasts that contribute to Brier Skill Score, and the horizontal

line defines forecasts with no resolution.
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Figure 11: ROC diagrams for class 1, 2, and 3 forecasts, based on the validation set.

varied. Class 1 forecasts span a relatively wide range of 10% to 90%, whereas class 2
forecasts are restricted to the range 10%-50%. This reflects the difficulty in predicting
golfball-size hail with a high degree of confidence. Class 3 forecasts reach probabilities of
about 70%.

It is convenient to superimpose the refinement diagram upon the attributes diagram,
the former labeled with blue squares in Figure 10. Evidently, the 3 forecast classes have
distinct levels of refinement. The class 1 forecasts display a mild degree of the desired U-
shaped pattern. Class 2 forecasts have an uncommon and undesirable bell-shaped pattern,
indicating that most of the forecasts are in the vicinity of 20%. The highly left-peaked
forecasts for class 3 suggest that the most common forecasts are at 0%. This is partially
a consequence of the rarity of class 3 observations in the data.

Finally, the introduction of a probability threshold can dichotomize the forecasts and
allow for the computation of ROC diagrams (Figure 11). These diagrams support the
previous findings that class 3 forecasts appear to have the highest performance, followed

by class 1, and class 2 forecasts, respectively.
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7 Summary

Numerous neural networks have been developed for the prediction of the occurrence and
the maximum size of severe hail. The parameters of the networks have been inferred
via Bayesian methodology in order to alleviate the problem of overfitting. Performance
is assessed in terms of multidimensional and scalar measures. It is shown that the NNs
outperform the existing counterparts. Attributes diagrams suggest that the forecasts con-
tribute positively to skill. Even forecasts of mid-size hail (~ 40mm) which initially (based
on a smaller data set) displayed no statistically significant skill now display skill, because
the current (larger) data set allows for the NNs to identify the underlying nonlinear rela-

tions.
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