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ABSTRACT

The National Severe Storms Laboratory has developed algorithms that compute a number of Doppler radar
and environmental attributes known to be relevant for the detection/prediction of severe hail. Based on these
attributes, two neural networks have been developed for the estimation of severe-hail size: one for predicting
the severe-hail size in a physical dimension, and another for assigning a probability of belonging to one of three
hail size classes. Performance is assessed in terms of multidimensional (i.e., nonscalar) measures. It is shown
that the network designed to predict severe-hail size outperforms the existing method for predicting severe-hail
size. Although the network designed for classifying severe-hail size produces highly reliable and discriminatory
probabilities for two of the three hail-size classes (the smallest and the largest), forecasts of midsize hail, though
highly reliable, are mostly nondiscriminatory.

1. Introduction

The National Severe Storms Laboratory (NSSL) has
developed numerous algorithms for the detection of at-
mospheric phenomena. These algorithms reside collec-
tively within an ‘‘umbrella’’ program called the Severe
Storm Analysis Package (SSAP). Two such algorithms
designed for the detection of tornadoes and/or damaging
wind have recently been supplemented with neural net-
works (NNs) (Marzban and Stumpf 1996/ 1998) and
their performance has been compared with conventional
statistical methods in Marzban et al. (1997). NSSL has
also developed a Hail Detection Algorithm (HDA) that
computes a number of attributes believed to be relevant
for the detection/prediction of severe hail (Witt et al.
1998a). The improvement brought about by the tornado
and damaging wind NNs renders it natural to develop
a similar NN to complement the HDA; in this scheme,
the HDA and other algorithms in SSAP compute the
attributes that are employed as the NN’s inputs, while
the output of the NN is based on ground truth (i.e.,
reported severe-hail size).

The statistical theory of NNs and the methodology
of employing them is now well developed (Bishop
1996). It has become common practice in many statis-
tical model-building tasks to examine NNs, as a can-
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didate, alongside traditional methods. There exist re-
gression models developed for the same purpose—a lin-
ear regression model for predicting size, and a logistic
regression model for classifying different size classes
(Billet et al. 1997). Both models are specific instances
of NNs, and so no attempt is made to compare NNs
with other statistical models. There are some differences
between the models developed here and those of Billet
et al. (e.g., choice of the predictors). Therefore, prior
to ‘‘fielding’’ a hail size prediction algorithm, a per-
formance comparison should be made.

The question of whether NNs are superior to tradi-
tional methods has been extensively examined (see ftp:
//ftp.sas.com/pub/neural/FAQ.html). The general con-
sensus (Bishop 1996) appears to be that most commonly
employed (if not all) statistical methods are in fact
equivalent to some NN.1 As such, NNs are not neces-
sarily superior to other methods and represent a con-
venient all-in-one ‘‘packaging.’’ At the same time, the
manifestations of that convenience can often be quite
dramatic.

An NN’s ability to represent a wide range of models
is usually accompanied by one disadvantage, namely an
NN’s tendency to overfit data. Overfitting occurs when

1 For example, an NN with a linear activation function and a mean
square error cost function is equivalent to linear regression. Similarly,
an NN with a logistic activation function, minimizing cross entropy
(see below), is equivalent to logistic regression.
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TABLE 1. The nine predictors.

No. Description

1
2
3
4
5
6
7
8
9

Cell-based vertically integrated liquid
Severe-hail index
Storm-top divergence (delta-V in m s21)
Midaltitude rotational velocity (m s21)
Height of the wet-bulb zero [km above sea level (MSL)]
Height of the melting level (km MSL)
Vertically integrated wet-bulb temp
Wind speed at the equilibrium level (m s21)
Storm-relative flow at 2208C level (m s21)

a model captures the statistical noise in the data rather
than the underlying signal. The problem of overfitting
is not peculiar to NNs; indeed, all regression models
can suffer from it to various degrees. A simple linear
regression model is prone to overfitting if the indepen-
dent variables have been transformed in some highly
nonlinear fashion. Polynomial regression, although ca-
pable of representing a wide range of functions (i.e., all
polynomials), can easily overfit data because of the ex-
ponential growth of the number of parameters as a func-
tion of the number of predictors. In that respect, NNs
occupy a special state in that the growth of the number
of parameters is only linear with the number of predic-
tors [see ‘‘curse of dimensionality’’ in Bishop (1996)].
At the same time, this restrained growth does not ad-
versely affect an NN’s ability to be a universal approx-
imator (Hornik et al. 1989).

In spite of being the least susceptible, NNs are capable
of and do overfit. A number of popular methods for
identifying a model that overfits utilize several inde-
pendent datasets; these methods fall under the general
classes of split-sample and resampling methods. Ex-
amples are cross-validation, jackknifing, and bootstrap
(Bishop 1996). In these methods, one or more data sub-
sets are employed for estimating the parameters of the
NN (i.e., training), and the remaining (validation) sub-
sets are employed for determining the optimal com-
plexity (nonlinearity) so as to prevent overfitting. These
methods are employed to identify the onset of overfit-
ting. Of course, knowledge of the overfitting model al-
lows for the identification of the optimal model (that
does not overfit).

Additionally, there exist means of restraining the ov-
erfitting problem (Sarle 1995). For example, the intro-
duction of a weight-decay term into the error function
can restrict the overfitting problem. Indeed, a weight-
decay term can be arranged to preclude overfitting al-
together but only at the cost of rendering the NN linear.
Using methods of Bayesian inference, it is possible to
arrive at a weight-decay term that is optimal in the sense
that the NN’s ability to overfit can be limited but without
compromising its nonlinearity. The details of this Bayes-
ian approach are beyond the scope of this article, but
further details and an application to tornado prediction
can be found in MacKay (1996), Neal (1996), Wolpert
(1993), and Marzban (1998). A non-Bayesian NN for
severe-hail size prediction developed recently (Marzban
and Witt 2000) has displayed some symptoms of ov-
erfitting, and so, with the aim of limiting the overfitting
problem, the NN developed herein is Bayesian (as de-
fined here). Meanwhile, bootstrapping will be employed
to identify the onset of overfitting.

The development of an NN model for severe-hail size
prediction can be divided into two subtasks: one of de-
veloping a model that predicts the occurrence of severe
hail, and another that predicts the size of severe hail,
given that severe hail has occurred or is expected to

occur. Only the latter will be considered in this article,
as the former model is currently under construction.

An NN for the prediction of size alone can be de-
veloped in two independent ways: one can develop an
NN that predicts the size of hail in some physical unit
(e.g., in. or mm), or one can assess the probability of
belonging to some size range. The data suggest that
severe hail reports fall naturally into three different clas-
ses, corresponding to coin size, golfball size, and base-
ball size, in an ordinal fashion. As such, it is possible
to assess the probability of a severe hail report belonging
to each of these three classes. The former approach mod-
els a continuous quantity, and so, falls in the domain
of regression, while the latter is an example of a clas-
sification problem. Both NNs will be considered herein,
and will be referred to as the regression NN and the
classification NN, respectively.

In what follows, the data and the methodology are
further described, and multidimensional (e.g., distri-
bution based) measures of performance are set forth in
terms of which the performance of the NNs is gauged.
Finally, a discussion section offers some final thoughts
on the matter of an NN for hail size prediction.

2. Data

The input variables provided to the NN include a mix
of Doppler radar–derived parameters along with several
parameters representing the near-storm environment.
The radar parameters include two based on reflectivity
data, cell-based vertically integrated liquid (Johnson et
al. 1998) and the severe hail index (Witt et al. 1998a),
as well as two based on velocity data, storm-top diver-
gence (Witt and Nelson 1991), and midaltitude rota-
tional velocity (Witt 1998). The near-storm environment
parameters include three based on thermodynamic data
and two based on kinematic data (Table 1). The verti-
cally integrated wet-bulb temperature parameter is com-
puted by integrating the wet-bulb temperature profile
from the surface to the height of the wet-bulb zero.
These near-storm environment parameters are either cal-
culated within the SSAP using numerical model data,
or they can be calculated from sounding data and man-
ually entered into an adaptable parameter file. For this
study, all the near-storm environment parameters were
calculated from sounding data. For each individual
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TABLE 2. Summary of the 81 storm cases analyzed.

Region No. of days No. of hailstorms

Western United States
High plains
Southern plains
Midwest
SE United States
NE United States
Total

13
7

22
15
19

6
81

21
27

115
85
94
44

386

FIG. 1. The distribution of reported hail size.

‘‘storm event’’ analyzed,2 a single sounding was used,
with the most representative sounding being chosen
from among the available candidates. Factors affecting
the choice were proximity to the midpoint, in time, of
the storm event, being in the ‘‘inflow sector’’ of the
event, and being reasonably close (within 400 km) to
the event (Rasmussen and Blanchard 1998). Incomplete
soundings that did not allow for the calculation of all
the environmental parameters, and soundings that ap-
peared to be contaminated by convection, were dis-
qualified.

The verification data on hail size comes from Storm
Data. Because Storm Data is a collection of severe
weather reports, the minimum hail size in this study is
19 mm (0.75 in.). There are numerous problems asso-
ciated with using Storm Data for verifying radar-based
algorithm predictions (Witt et al. 1998a,b). For predic-
tion of maximum hail size, the primary concern involves
the possibility that any given hail report is not repre-
sentative of the maximum size being produced by the
storm (at the time of the report). To minimize the impact
of this possibility, the analysis was restricted to the max-
imum size observed per hailstorm (Witt 1998). For each
severe hailstorm, a 20-min time window (Witt et al.
1998a) was used to relate the predictor variables to the
maximum reported hail size. For the radar-based param-
eters, the maximum value within the time window was
used, whereas for the near-storm environment param-
eters, an average value was used. Since a single sound-
ing was used for each severe event, the only environ-
mental parameter that actually required averaging across
the 20-min time window was the storm-relative flow
(due to changes in the storm motion vector).

In situations where there are multiple reports of the
same maximum hail size for a storm, the report corre-
sponding to the time period when the storm appeared
to be weaker was used, since these radar characteristics
were indicative of the minimum strength necessary to
produce the observed maximum hail size. For example,
suppose one is using vertically integrated liquid (VIL)
to predict maximum hail size. Then, if there are two
reports of golfball-size hail with a storm, and the VIL
is 50 for one report and 60 for the other, it is reasonable

2 A storm event is defined as a continuous period of time (up to
24 h long) when convective activity is occurring within 230 km of
a WSR-88D site.

to assume that a VIL of 50 is the representative value
associated with golfball-size hail for this storm. How-
ever, this condition (using the weaker period) only ap-
plies to multiple reports where all the predictor variables
have been measured within the time window; that is,
the storm-top divergence or midaltitude rotational ve-
locity parameters are not ‘‘missing’’ due to range fold-
ing. In cases where the choice was between using a
stronger period with a full set of data or a weaker period
that includes missing data, then the stronger period was
used.

The HDA and other algorithms within SSAP were
employed to compute the NN input values for 81 storm
days from across the United States (Table 2), on which
386 severe hailstorms were observed. The distribution
of maximum reported hail sizes for these 386 reports is
shown in Fig. 1. The common practice of reporting hail
size using familiar circular or spherical objects (e.g.,
various coins or balls) is clearly evident, as reports tend
to be clustered along discrete sizes. The highest fre-
quency corresponds to dime-, nickel-, and quarter-
(coin) size hail (19–25 mm), golfball-size hail (44 mm),
and baseball-size hail (70 mm). It would appear that few
hail reports are actually measured to obtain a precise
reading of their size and that most hail sizes are esti-
mated. Hence, one must assume that a certain amount
of ‘‘rounding off’’ error exists in the observations, and
this error appears to increase as hail size increases. Be-
cause of all this, the prediction of maximum hail size
was approached from two distinct directions: regression
and classification.

3. Bayesian neural network
In NNs, nonlinearity is determined by two quantities,

the number and the magnitude of the parameters
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(weights). The former is determined by the number of
hidden nodes (if the inputs are not collinear), and the
latter is determined by the variance of the weights. If
the number of independent weights greatly exceeds the
sample size, and the magnitude of the weights greatly
exceeds unity (if the inputs are normalized in some fash-
ion), then an NN can overfit data. If, however, either of
these conditions is not met, then overfitting is unlikely.
For instance, if the magnitude of the weights is restricted
to be much less than one, then most activation functions
are linear, and so the NN simply becomes linear re-
gression, regardless of the number of hidden nodes.

As such, it is possible to restrain overfitting, even
with a large NN (i.e., with many hidden nodes), if the
weights are prevented from becoming too large. The
magnitude of the weights can be constrained by intro-
ducing a weight-cay term into the error function that is
to be minimized (Bishop 1996). The optimal value of
the coefficient of this term can be inferred by Bayesian
techniques. One of the advocates of this method is
MacKay (1996), and the methodology followed in this
article is also that of MacKay. The NN program em-
ployed in this research is a variation on that developed
by MacKay (which is available on the Web at http://
wol.ra.phy.cam.ac.uk/mackay).

Both the split-sample and resampling methods rely
on splitting the data into three sets: a training set, em-
ployed to estimate the parameters of the model; a val-
idation set for optimizing the complexity of the model;
and a test set for estimating the unbiased performance
of the model. So, for the purpose of identifying the
optimal complexity (i.e., number of hidden nodes, or
the magnitude of the weights) it is sufficient to split the
data into only two sets: a training and a validation set.
For small sample sizes, it is preferable to employ a
resampling method instead of a split-sample method
such as cross-validation (Bishop 1996). An example of
a resampling method for model selection is bootstrap-
ping (Efron and Tibshirani 1993). In its simplest form,
one repeatedly trains with subsamples of the data, and
the optimal NN is selected to be the one with the lowest
average error over the unused subsamples. From the
variance (over the subsamples) of the validation errors
one can construct a confidence interval for the perfor-
mance of the NN.

In addition to the variance due to resampling, in NNs
there exists a variance due to local minima. In other
words, there is no assurance that all the NNs trained on
the different subsamples rest in the same minimum of
the error function. Of course, in practice, only the deep-
est, practically reachable local minimum is of interest.
Specifically, the distribution (over the different subsam-
ples) of the values of the error function at the local
minima can aid in assessing the likelihood of obtaining
a deeper local minimum than a given one. Thus, a local
minimum that is highly unlikely to be won over by a
deeper one is considered to be the deepest local mini-
mum. This issue has been thoroughly discussed in Marz-

ban (2000) and Marzban and Witt (2000); suffice it to
say that the ‘‘global’’ minimum referred to in the current
article is the deepest local minimum as outlined above.

4. Methodology

As mentioned previously, the problem of predicting
maximum hail size can be approached either from the
point of view of regression or classification. This can
be illustrated by examining the distribution of the hail
size dataset (Fig. 1). The number of distinct values (i.e.,
14) is sufficiently large to warrant a regression analysis
wherein the predictand is hail size. On the other hand,
the existence of clusters/peaks in that distribution sug-
gests three distinct classes for hail size, corresponding
to coin size, golfball size, and baseball size. As such,
a classification approach is also feasible. Both approach-
es are fruitful in that the former provides estimates for
hail size in some physical unit, and the latter can assess
the probability of belonging to one of the three classes
of hail size.

In the regression approach, an appropriate measure
of error is the mean square error (MSE), defined as

1
2MSE 5 [t 2 y(x, v)] , (1)O

N

where x is the vector of inputs (attributes), v is the
vector of the weights, and t is the target value that is
to be estimated by the output y(x, v). The summation
is over the number of cases, N, in the relevant dataset
(training, validation, etc.). The activation function for
the hidden nodes is taken to be the logistic function,
f (x) 5 1/[1 1 exp(2 x)], while that of the single output
node is the linear function. The former introduces the
necessary nonlinearity into the NN, and the latter allows
for the output node to take the full range of values taken
by the target.

In the classification approach, the appropriate error
function is cross-entropy, defined as

1
S 5 2 {t logy(x, v) 1 (1 2 t) log[1 2 y(x, v)]}.O

N

(2)

In the c-class case, with c output nodes representing
class membership, and with an appropriate choice of
activation functions [i.e., the softmax function (Bishop
1996), a generalization of the logistic function to mul-
tiple output nodes], the minimization of S yields outputs
that can be interpreted as the posterior probability of
class membership, given the inputs (Richard and Lipp-
mann 1991). Such a probability is precisely what is
required for forecasting purposes. An additional weight-
decay term of the form

1
2S 5 a vOv 2

restrains the size of the weights (and therefore, over-
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fitting) without affecting the probabilistic interpretation
of the output nodes. The total error function is, therefore,
S 1 Sv.

Another assumption of Richard and Lippmann (1991)
is that 1-of-c coding be employed for coding the classes
among the output nodes. This means that three output
nodes are required to represent three classes, with the
largest output node designating the corresponding class.
Accordingly, the NNs described herein have three out-
put nodes. This is in contrast to the NNs discussed in
Marzban and Witt (2000) wherein the problem of pre-
dicting the three classes was decomposed into three two-
class problems. In other words, three NNs were devel-
oped: one for discriminating between coin-size hail and
otherwise, a second for discriminating between golfball-
size hail and otherwise, and a third NN for discrimi-
nating between baseball-size hail and otherwise. As
such, each network required only one output node, and
a simple application of Bayes’ theorem showed that the
output nodes represented posterior probabilities for the
corresponding classes. The reason for this was to reduce
the chance of overfitting by reducing the number of
parameters between the hidden and the output layer. In
the current analysis, however, overfitting is restrained
through the weight-decay term in the error function, and
so it is safe to allow for three output nodes.

In both the regression and the classification schemes
the number of input nodes is nine (or seven, if there are
missing data; see the last paragraph in this section),
namely, the total number of hail attributes. Experimen-
tation with smaller numbers of input nodes suggests that
nothing is gained by employing subsets of the nine at-
tributes as inputs (see the discussion section).3 Each
attribute is centralized by subtracting the mean and di-
viding by the respective standard deviation. This can
stabilize and even expedite convergence to the minimum
of the error function.

As mentioned previously, the number of hidden nodes
(on one hidden layer) was determined via bootstrapping,
and it was found unnecessary to go beyond one hidden
layer. As expected, what is gained by employing the
Bayesian procedure for inferring the strength of the
weight-decay term (a) is that no loss of performance is
found even for a larger number of hidden nodes. In other
words, the Bayesian method yields a range of numbers
of hidden nodes within which the NN’s performance is
insensitive to the precise number of hidden nodes.

There is also the matter of missing data. One common
approach is to simply replace any missing data with the

3 One may also employ some variable selection method (see ftp://
ftp.sas.com/pub/neural/importance.html), but it is generally believed
that in NNs the best such method is the brute-force one, i.e., ex-
amining all possible combinations of the inputs. Given its imprac-
ticality, it is common practice to explore only a subset of all the
combinations to assure that a ‘‘reasonable set’’ (if not the best set)
has been found. Further, collinearity of the inputs is not of concern
if an NN is employed as a ‘‘black box’’ for making predictions,
without examining the individual parameters of the NN.

average of the nonmissing data for each predictor. For
a skewed distribution, however, this approach can be
unsatisfactory. In the present application, the fortunate
situation arises in which the missing data always appear
in only two of the predictors (storm-top divergence and
midaltitude rotational velocity). As such, it is possible
to develop two NNs, one based on all the data and all
nine inputs (when all nine inputs are available), and
another trained on only seven inputs for which there are
no missing data. This was done for both the regression
and the classification NN.

For both the classification and regression NNs, the N
5 386 cases were divided into a training set (250) and
a validation set (136), and this partitioning was repeated
four times for the purpose of bootstrapping. The size of
the training set is (approximately) (1 2 e21)N ; (2/3)N
as suggested in a bootstrapping scheme with replace-
ment (Efron and Tibshirani 1993).

5. Performance measures

Although single, scalar (i.e., one-dimensional) mea-
sures such as MSE and cross-entropy are minimized
during the training phase, it is important to assess the
performance of the NN in a multidimensional sense such
as with scatterplots, distribution plots, or attributes di-
agrams (Wilks 1995; Murphy and Winkler 1992).

The performance of the regression network can be
assessed in terms of the scatterplot of the actual versus
predicted hail size. Such a plot can display regions of
forecasts that may be problematic as well as regions
where the NN performs superbly. Of course, it is pos-
sible to distill this two-dimensional measure into a sin-
gle, scalar measure such as R2, which reflects the amount
of variance explained by the model, but such a reduction
is apt to lead to loss of information. Another multidi-
mensional view of performance is offered by a residual
plot (Draper and Smith 1981). This is a plot of the
residues (i.e., actual minus predicted) as a function of
predicted size.

For the classification network, there are many more
ways of expressing performance. Classification perfor-
mance can be assessed not only in terms of scalar and
multidimensional measures, but also through categorical
and probabilistic measures. This gives rise to four pos-
sibilities: an example of a scalar, categorical measure is
the Heidke skill Score (Wilks 1995), and an example
of a scalar, probabilistic measure is the ranked proba-
bility score (a multiclass generalization of the Brier
score; Wilks 1995). As for multidimensional measures
(typically, diagrams), an example of a categorical mea-
sure is the relative operating characteristic (ROC) dia-
gram, and an example of a probabilistic measure is the
attributes diagram (more below).

The starting point for computing categorical measures
is the contingency table. The elements of a contingency
table, Cij are the number of observations in the ith class
that are forecast as belonging to the jth class. One can
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construct numerous categorical measures, each of which
captures a different facet of performance. A nonex-
haustive examination of such measures based on 2 3
2 contingency tables is given in Marzban (1998). While
many such measures are easily generalized to the 3 3
3 case, others are constructed from more basic quantities
that are defined only for a two-class problem. That prob-
lem is exacerbated when forecasts are probabilistic. For
instance, reliability and attributes diagrams do not gen-
eralize to multiple classes.4

Typically, one reduces the three-class problem to
three two-class problems. In other words, the problem
of classifying three objects—labeled 1, 2, and 3—is
broken down to three two-class problems: classification
of class 1 or otherwise, class 2 or otherwise, and class
3 or otherwise. Although this treatment of a three-class
problem can lead to some loss of information (Wilks
1995), the loss is partially compensated by the multi-
dimensionality brought about via reliability or attributes
diagrams. The three-class problem in the present ap-
plication is reduced in this fashion.

In a two-class problem (i.e., with yes/no observations
and forecasts), with 1 (2) representing no (yes), two
basic quantities are the probability of detection (POD)
and the false alarm ratio (FAR), defined as

C C22 12POD 5 , FAR 5 .
C 1 C C 1 C21 22 12 22

Another basic quantity is the false alarm rate (FAT),
defined as

C12FAT 5 .
C 1 C11 12

One multidimensional measure of performance is the
ROC diagram. A ROC diagram (Masters 1993) is simply
a parametric plot of POD versus FAT, as a probability
threshold is varied from 0 to 1. It is easy to show that
a classifier with no ability to discriminate between two
classes yields a diagonal line of slope one and intercept
zero; otherwise, the ROC curve lies in the region above
the diagonal line. The area under the curve is often taken
as a scalar measure of the classifier’s performance, and
so, a perfect classifier would have an area of 1 under
its ROC curve, while a random classifier would have
an area of 0.5 (i.e., the area under the diagonal line).
In addition to its multidimensionality, another virtue of
a ROC diagram is its ability to express performance
without a specific reference to a unique probability
threshold. A specific choice of the threshold calls for

4 One generalization of reliability diagrams has been introduced by
Hamill (1987). However, it appears that the proposed diagrams assess
not reliability but some other facet of performance quality. The pro-
posed diagrams have been computed for the current application; how-
ever, they suggest that the facet being assessed is totally ‘‘perfect.’’
In other words, deviations from perfect quality are all statistically
insignificant. As such, the proposed diagrams do not offer a useful
assessment of performance, and are not presented herein.

knowledge of the costs of misclassification, which are
user dependent. In this way, a ROC diagram offers a
user-independent assessment of performance. Because
the ROC diagram is based on inherently two-dimen-
sional quantities (POD and FAT), it has no natural ex-
tension to the three-class case. Therefore, three ROC
diagrams must be considered, one for each of the three
classes.

Since the network produces probabilistic forecasts, it
is possible to assess the quality of the forecasts without
categorizing the forecasts. One commonly employed
probabilistic measure is the Brier skill score (BSS)
which is based on the MSE in Eq. (1), and is defined
as (Wilks 1995)

MSE
BSS 5 1 2 , (3)

p(1 2 p)

where p is the climatological probability of hail of a
given size. Due to its scalar nature, BSS fails to capture
all the facets of probabilistic forecasts. Consequently,
the quality of the probabilities will be assessed within
a probabilistic scheme (Murphy and Winkler 1987,
1992; Wilks 1995). According to Murphy and Winkler
(1992), the various aspects of the quality of probabilistic
forecasts can be captured by three diagrams: reliability
(or calibration), refinement, and discrimination dia-
grams. In terms of the conditional distribution of fore-
casts, f , and observations, x, a reliability diagram is a
plot of p(x 5 2 | f ) as a function of f .5 A refinement
plot is the plot of the marginal distribution p( f ) as a
function of f , and a discrimination plot is a plot of
p( f | x 5 1), p( f | x 5 2), . . . ,p( f | x 5 c) as a function
of f , where c is the total number of classes in the prob-
lem (here 3). Reliability diagrams can be supplemented
with the contribution of the forecasts to BSS and their
resolution, with the resulting diagram referred to as an
attributes diagram (Murphy and Winkler 1992). Reso-
lution is the variance of the difference between the un-
conditional observations and conditional (on forecast)
observations (Murphy and Daan 1985).

The reliability portion of an attributes diagram dis-
plays the extent to which the frequency of an event at
a given forecast probability matches the actual forecast
probability. A refinement diagram displays the sharp-
ness of the forecasts, that is, the extent to which very
high or very low probabilities are issued, and a dis-
crimination plot exhibits the extent to which the fore-
casts discriminate between the classes. All of these to-
gether present a fairly complete representation of per-
formance quality.

6. Results

As mentioned previously, two NNs have been de-
veloped: a regression NN designed to estimate hail size,

5 Here, x 5 1 and x 5 2 refer to the nonexistence and existence
of an event, respectively.
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FIG. 2. The training and validation mean square errors of the NN
(square) and MEHS (circle) for four bootstrap trials.

FIG. 3. Scatterplot of the actual vs predicted hail size of the (left)
NN and (right) MEHS for the training (dark dots) and validation
(circles) data. Also shown are the corresponding regression fits.

and a classification NN for modeling the probability of
the three hail size classes. The optimal number of hidden
nodes for both networks was found via bootstrapping,
as described in the method section. However, as ex-
pected within the Bayesian approach, the final results
are quite insensitive to the precise number of hidden
nodes. In particular, for the regression NN it was found
that any number of hidden nodes between 0 and 4 yields
results that are statistically equivalent. For the classi-
fication NN the range of the number of hidden nodes
leading to comparable performance is 2–6. As a result,
the number of hidden nodes was set at 2 for the re-
gression NN, and at 4 for the classification NN.

According to the bootstrap approach, in order to as-
sure that the results are not jeopardized due to sampling
effects, one must repeat the entire training/validation
process with different training and validation data. For
the current analysis, four such trials are made and the
results are presented either separately, or averaged over
the trials.

Having identified the optimal NNs, one can turn to
their performance. Again, only multidimensional mea-
sures (i.e., diagrams) will be employed in order to avoid
any loss of information brought about by the use of
scalar measures.

We begin with the regression NN. In this case, it is
possible to compare the performance of the NN with an
existing model that is currently in operation in the
Weather Surveillance Radar-1988 Doppler (WSR-88D)
HDA. The existing model is an empirically derived
equation for the maximum expected hail size. The mod-
el, hereafter referred to as MEHS, is a nonlinear model
based only on the severe hail index (Witt et al. 1998a).
Figure 2 shows the training and the validation errors for
the four bootstrap trials of the NN and the MEHS mod-

els. It can be seen that not only does the NN have
training and validation mean square errors that are lower
than those of MEHS, they are also more clustered. In
other words, the NN consistently outperforms MEHS
in terms of the mean square error of the forecasts.

Figure 3 shows the scatterplot of the NN and MEHS
for one of the bootstrap trials. The dark dots are the
training data and the circles are the validation data. From
the general pattern of these figures, it is evident that the
NN outperforms MEHS. Regressing to a scalar measure,
like r2 of the fits, provides a more quantitative measure
of the goodness of fit. Values of r2 approaching 1 imply
a better fit. The r2 of the training and validation data
for the NN are 0.51 and 0.40, respectively. By com-
parison, the same quantities for MEHS are 0.34 and
0.29. Clearly the NN provides a far better fit to the data
than MEHS does. Also shown, are the regression fits to
the corresponding plots. It can be seen that whereas the
NN’s fit to both the training and validation datasets pro-
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FIG. 4. Residual plot of the (left) NN and (right) MEHS for the
training (dark dots) and validation (circles) data. Also shown are the
corresponding regression fits.

FIG. 5. Discrimination diagrams for (top) class 1, (middle) class 2,
and (bottom) class 3 forecasts.

duces diagonal lines of slope 1, the MEHS slopes fall
short of that ideal value. This means that if MSE is the
measure of error (or agreement), then on the average
there is near-perfect agreement between NN-predicted
size and the actual size; by contrast, the MEHS-pre-
dicted size is typically higher than the actual size (i.e.,
it has an overforecasting bias).

An examination of the residual plots (Fig. 4) is also
informative. First, the performance of both the NN and
MEHS deteriorates with increasing hail size.6 That, of
course, is partially a consequence of the skewed nature
of the distribution of hail size (Fig. 1). Furthermore, the
NN displays far less scatter about the horizontal line
than MEHS does. As such, the NN’s predictions are
more accurate than those of MEHS. Again, a scalar but

6 This heteroscedasticity is detrimental only if the NN parameters
are subjected to hypothesis testing; otherwise, this instability in the
variance of the residuals is not of great concern.

quantitative reflection of these observations is offered
by the r2 of the residuals. Here a small r2 is desirable,
for that implies more accurate predictions. For the NN,
the training and the validation r2 are 0.0002, and 0.0017,
respectively, while the same two quantities for MEHS
are 0.21, and 0.13. Also, the regression fits to the NN
data yield nearly horizontal lines for both the training
and the validation sets. This is desirable because it im-
plies that the NN has correctly captured the underlying
relation between the predictors and hail size. By con-
trast, the same fit for the MEHS data yields lines that
have significant negative slopes. In other words,
MEHS’s predictions not only deteriorate with the mag-
nitude of the prediction (as do also the NN’s), but they
are also heavily biased toward larger estimates.

Continuing with performance issues, that of the clas-
sification networks is assessed in terms of ROC, dis-
crimination, refinement, and attributes diagrams. The
former requires the introduction of a probability thresh-
old and, so, will be treated last. The discrimination di-
agrams for the three classes are displayed in Fig. 5. It
can be seen that the class 1 forecasts clearly discriminate
between the three classes. The distribution of class 1
observations is peaked to the right, while those of the
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FIG. 6. The attributes and refinement diagrams for the (top) class
1, (middle) class 2, and (bottom) class 3 forecasts. Also shown are
the 95% confidence intervals due to sampling. The curve consisting
of the squares is the refinement diagram, the hashed region corre-
sponds to forecasts that contribute to BSS, and the horizontal line
defines forecasts with no resolution.

other two classes are either flat or peaked to the left.
This is a desirable result, although ideally one would
want one curve peaked to the right and two curves peak-
ed to the left. By contrast, class 2 forecasts display little
or no discriminatory capability. Although, the class 1
curve is peaked to the left (as desired), the curve that
is peaked to the right is the class 3 curve, and not the
class 2 curve. Finally, class 3 forecasts are quite dis-
criminatory, but with an interesting twist. They derive
their discriminatory capability not only from the iden-
tification of class 3 observations, but also (in fact, most-
ly) from the identification of observations that do not
belong to class 3.

Several facets of the quality of the forecasts can be
assessed through attributes diagrams. Figure 6 shows
these diagrams for forecasts belonging to each of the
three classes. It can be seen that the reliability of nearly
all the forecasts is within statistical limits of perfect
forecasts (i.e., the diagonal line). The error bars are 95%
confidence intervals due to sampling. The horizontal
line corresponds to forecasts that have no resolution,

and the bisector of the angle formed by it and the di-
agonal marks the locus of forecasts with no skill (i.e.,
BSS 5 0). The shaded area defines forecasts that con-
tribute positively to skill. Therefore, it can be seen that
in addition to being highly reliable, all the forecasts also
contribute positively to skill. This is true even for the
class 2 forecasts for which almost no discriminatory
capability exists (Fig. 5, middle). The lack of discrim-
inatory class 2 forecasts and their positive contribution
to BSS may seem paradoxical; however, it must be noted
that the vicinity of the reliability curve (dark circles) in
Fig. 6b to the region of no skill, in conjunction with
the size of the error bars, suggests that the contribution
of the forecasts to skill may not be statistically signif-
icant.

Although the probabilities are all highly reliable, the
range of the forecasts is quite varied. Class 1 forecasts
span a relatively wide range of 10%–90%, whereas class
2 forecasts are restricted to the range 20%–50%. This
reflects the difficulty in predicting class 2 hail with a
high degree of confidence. It is interesting that class 3
forecasts can reach probabilities nearing 100%, albeit
rarely.

It is convenient to superimpose the refinement dia-
gram upon the attributes diagram, the former labeled
with squares in Fig. 6. Evidently, the three forecast clas-
ses have distinct levels of refinement. The class 1 fore-
casts display a mild degree of the desired U-shaped
pattern. Class 2 forecasts have an uncommon and un-
desirable bell-shaped pattern, indicating that most of the
forecasts are in the vicinity of 20%. The highly left-
peaked forecasts for class 3 suggest that the most com-
mon forecasts are at 0%. This is partially a consequence
of the rarity of class 3 observations in the data.

Finally, the introduction of a probability threshold can
dichotomize the forecasts and allow for the computation
of ROC diagrams (Fig. 7). These diagrams support the
previous findings that class 3 forecasts appear to have
the highest performance, followed by class 1, and class
2 forecasts, respectively. In fact, from the validation data
(Fig. 7b), one might suspect that class 2 forecasts are
nearly random because the diagonal line goes through
the corresponding error bars.

7. Summary and discussion

Two neural networks have been developed for max-
imum hail size prediction, one for estimating the size
in some physical dimension, and a second for assessing
the probability of belonging to one of three hail size
classes. The parameters of the networks have been in-
ferred via Bayesian methodology in order to alleviate
the problem of overfitting. Four Doppler radar, and five
environmental variables, have been employed as inputs
to the networks. Performance is assessed in terms of
multidimensional measures. It is shown that the network
designed to predict maximum hail size outperforms the
existing method in the WSR-88D Hail Detection Al-
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FIG. 7. ROC diagrams for class 1, 2, and 3 forecasts, based on
(top) the training set and (bottom) the validation set. The error bars
in the x and y directions are the one standard deviation intervals based
on bootstrapping.

gorithm. Since the existing method does not produce
probabilities, it is not possible to compare the perfor-
mance of the second network; however, it is found that
the network-produced probabilities constitute high qual-
ity forecasts, with quality gauged in terms of reliability,
refinement, and discrimination diagrams. Attributes di-
agrams suggest that the forecasts contribute positively
to skill. The one possible exception is the forecasts for
midsize hail (; 40mm), which display no statistically
significant skill. This is easy to understand, for discrim-
inating between extreme events is a relatively simple
task. In contrast, disambiguating intermediate events
from the extreme ones is more difficult. It is possible
that all three classes can be reasonably discriminated as
more data become available.

To better understand the relation between the indi-
vidual attributes (predictors) and hail size, it is useful
to compute the corresponding linear correlation coef-
ficients, r. The r between hail size and the four ‘‘radar
attributes’’ (attributes 1–4 in Table 1) all have approx-
imately equal correlation with hail size, namely 0.5
(standard error 5 0.04). The ‘‘environmental attributes’’

(attributes 5–9 in Table 1) have linear correlations that
vary from 0.01 to 0.1, but are practically zero within
the standard errors (0.05). Of course, as evidenced by
the nonzero number of hidden nodes in the NNs, the
true underlying relationship is nonlinear. In fact, the
exclusion from the NN of the variables with a small
correlation with hail size leads to inferior performance.
This implies that in spite of their weak linear correlation
with hail size, the environmental attributes do play a
significant role in a nonlinear and interactive model
(e.g., NN) wherein the prediction equation for severe-
hail size includes interaction terms (e.g., products of the
predictors).

Furthermore, the r between the various attributes
themselves is important in ascertaining the collinearity
among the inputs. Identifying collinear inputs (i.e., a
pair of inputs with a large r) and the exclusion of one
member of the pair as an input to the NN can reduce
the likelihood of overfitting the data. The most collinear
pair of attributes is (5, 6) with r 5 0.83, followed by
the pair (6, 7) with r 5 0.70. Neither of these r’s is
sufficiently large to justify the exclusion of either mem-
ber of either pair. As a result, no attributes were excluded
as input nodes.

Since the data used to develop the neural networks
consist only of severe-hail reports, the hail size predic-
tions are conditional in nature. In order words, once it
is determined that severe hail is occurring, or is expected
to occur, then the predictions made by the neural net-
works can be used to estimate the maximum hail size.
The process would be similar to other situations where
conditional forecasts are made, for example, the con-
ditional probability of severe thunderstorms given that
thunderstorms actually occur. Once a sufficiently large
dataset is collected of hail reports of all sizes (not just
19 mm and larger), then new neural networks can be
developed to make nonconditional predictions of max-
imum hail size.

As to the operational utilization of these new tech-
niques, some users, particularly those from regions that
are not well represented in the dataset (e.g., the northeast
and western United States), might be concerned about
the robustness of the neural networks. We plan to ad-
dress this issue by analyzing more data specifically from
these regions, and to retrain the neural networks on the
larger dataset before they are added to any operational
system. Another potential concern of users might be that
of computation of the near-storm environment param-
eters. Although sounding data were used in the devel-
opment of the neural networks, it is expected that real-
time numerical model data will be utilized by the SSAP
in an operational setting to determine these parameters
(Lee et al. 1998), thus relieving users of the burden of
this task.

What remains to complete the augmentation of the
Hail Detection Algorithm with neural networks is the
development of the latter for assessing the probability
of severe hail, regardless of size. Such a network would
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issue a probability for the existence of severe hail (with-
in some time window) after which the networks outlined
in this article would provide information regarding the
size of the forecast hail. The former network is currently
in development and will be discussed in a separate ar-
ticle.

Acknowledgments. The authors are grateful to Harold
Brooks, V. Lakshmanan, and Conrad Ziegler for valu-
able discussions. Mark DeLisi and an anonymous re-
viewer are acknowledged for insightful reviews. This
study was partially supported by the WSR-88D Oper-
ational Support Facility.

REFERENCES

Billet, J., M. DeLisi, and B. G. Smith, 1997: Use of regression tech-
niques to predict hail size and the probability of large hail. Wea.
Forecasting, 12, 154–164.

Bishop, C. M., 1996: Neural Networks for Pattern Recognition. Clar-
endon Press, 482 pp.

Draper, N. R., and H. Smith, 1981: Applied Regression Analysis. John
Wiley and Sons, 709 pp.

Efron, B., and R. J. Tibshirani, 1993: An Introduction to the Bootstrap.
Chapman and Hall, 436 pp.

Hamill, T. M., 1997: Reliability diagrams for multicategory proba-
bility forecasts. Wea. Forecasting, 12, 736–741.

Hornik, K., M. Stinchcombe, and H. White, 1989: Multilayer feed-
forward networks are universal approximators. Neural Networks,
4, 251–257.

Johnson, J. T., P. L. MacKeen, A. Witt, E. D. Mitchell, G. J. Stumpf,
M. D. Eilts, and K. W. Thomas, 1998: The Storm Cell Identi-
fication and Tracking algorithm: An enhanced WSR-88D algo-
rithm. Wea. Forecasting, 13, 263–276.

Lee, R. R., G. J. Stumpf, and P. L. Spencer, 1998: Should geographic
region or near-storm environment dictate WSR-88D algorithm
adaptable parameter settings? Preprints, 19th Conf. on Severe
Local Storms, Minneapolis, MN, Amer. Meteor. Soc., 784–787.

MacKay, D. J. C., 1996: Models of Neural Networks III. Springer-
Verlag, 311 pp.

Marzban, C., 1998: Scalar measures of performance in rare-event
situations. Wea. Forecasting, 13, 753–763.

——, 2000: A neural network for tornado diagnosis. Neural Comput.
Appl., 9, 133–141.

——, and G. Stumpf, 1996: A neural network for tornado prediction
based on Doppler radar-derived attributes. J. Appl. Meteor., 35,
617–626.

——, and ——, 1998: A neural network for damaging wind predic-
tion. Wea. Forecasting, 13, 151–163.

——, and A. Witt, 2000: A neural network for hail size prediction.
Preprints, Second Conf. on Artificial Intelligence, Long Beach,
CA, Amer. Meteor. Soc., 38–44.

——, H. Paik, and G. Stumpf, 1997: Neural networks vs. Gaussian
discriminant analysis. AI Appl., 10, 49–58.

Masters, T., 1993: Practical Neural Network Recipes in C11. Ac-
ademic Press, 493 pp.

Murphy, A. H., and H. Daan, 1985: Forecast evaluation. Probability,
Statistics, and Decision Making in the Atmospheric Sciences, A.
H. Murphy and R. W. Katz, Eds., Westview Press, 379–437.

——, and ——, 1987: A general framework for forecast verification.
Mon. Wea. Rev., 115, 1330–1338.

——, and ——, 1992: Diagnostic verification of probability forecasts.
Int. J. Forecasting, 7, 435–455.

Neal, R. M., 1996: Bayesian Learning for Neural Networks. Cam-
bridge University Press, 183 pp.

Rasmussen, E. N., and D. O. Blanchard, 1998: A baseline climatology
of sounding-derived supercell and tornado forecast parameters.
Wea. Forecasting, 13, 1148–1164.

Richard, M. D., and R. P. Lippmann, 1991: Neural network classifiers
estimate Bayesian a-posteriori probabilities. Neural Comput., 3,
461–483.

Sarle, W. S., 1995: Stopped training and other remedies for overfitting.
Proc. 27th Symp. on the Interface of Computing Science and
Statistics, Cary, NC, SAS, 352–360,

Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences.
Academic Press, 467 pp.

Witt, A., 1998: The relationship between WSR-88D measured mi-
daltitude rotation and maximum hail size. Preprints, 19th Conf.
on Severe Local Storms, Minneapolis, MN, Amer. Meteor. Soc.,
740–743.

——, and S. P. Nelson, 1991: The use of single-Doppler radar for
estimating maximum hailstone size. J. Appl. Meteor., 30, 425–
431.

——, M. D. Eilts, G. J. Stumpf, J. T. Johnson, E. D. Mitchell, and
K. W. Thomas, 1998a: An enhanced hail detection algorithm for
the WSR-88D. Wea. Forecasting, 13, 286–303.

——, ——, ——, E. D. Mitchell, J. T. Johnson, and K. W. Thomas,
1998b: Evaluating the performance of WSR–88D severe storm
detection algorithms. Wea. Forecasting, 13, 513–518.

Wolpert, D. H., 1993: On the use of evidence in neural networks.
Advances in Neural Information Processing Systems 5, C. L.
Giles, S. J. Hanson, and J. D. Gowan, Eds., Morgan Kaufmann,
539–546.


