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Abstract

We discuss some mathematical aspects of the problem of invert-
ing gravitational field data to extract the underlying mass distribution.
While the forward problem of computing the gravity field from a given
mass distribution is mathematically straightforward, the inverse of this
forward map has some interesting features that make inversion a difficult
problem. In particular, the forward map has an infinite-dimensional ker-
nel which makes the inversion fundamentally non-unique. We character-
ize completely the kernels of two gravitational forward maps, one map-
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ping mass density to the Newtonian scalar potential, and the other map-
ping mass density to the gravity gradient tensor, which is the quantity
most commonly measured in field observations. In addition, we present
some results on unique inversion under constrained conditions, and com-
ment on the roles the kernel of the forward map and non-uniqueness play
in discretized approaches to the continuum inverse problem.

Keywords: Gravitational Inverse Problem, Ill-Posed Problems, Discretiza-

tion

Weighing the shape of a gravitating body

More than thirty years ago, Mark Kac asked “Can you hear the shape of a

drum?” meaning: do two distinct planar domains always have distinct spectra

of eigenvalues for their respective Laplace operators (acting on functions) with

the usual Dirichlet (or Neumann) boundary conditions? If the answer is yes,

the shape of a “drum” can be inferred by hearing its spectrum (characteris-

tic sound), if the answer is no, then two distinctly shaped drums may have

identical spectra (in which case they are called “isospectral domains”) [7, 3].

Kac’s article [7] stimulated a long line of research which eventually settled

his question in the negative: There do exist isospectral domains (and, more

generally, isospectral Riemann surfaces and isospectral Riemannian manifolds

in higher dimensions) which are not isometric. In other words, the spectral

inverse problem is ill-defined, subject to a fundamental ambiguity which can

be precisely characterized [2].

A similar ambiguity plagues the gravitational inverse problem, that is, the

problem of inferring the precise shape of a mass distribution by observing its

distant gravitational field.

The gravitational inverse problem is the problem of inverting the gravita-

tional forward map, which we take to be a map sending a compact supported

mass distribution to a gravity observable: in practice, the observable could be

either the Newtonian gravitational potential or gravity gradients.

More precisely, and focusing on the gravity potential Φ for the moment,

what we will mean by the gravitational inverse problem is the following: Given

a spherical region BR = {�r : |�r| < R} of radius R in R
3, and a solution Φ(�r)

(the gravitational potential in free space) of the Laplace equation ∇2Φ = 0

outside the region BR (i.e. for |�r| > R) which vanishes at infinity, find a mass
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density distribution ρ(�r ′) supported inside BR which gives rise to Φ(�r) in the

exterior region outside BR. In plainer language, find a ρ(�r ′) with support

inside BR such that

Φ(�r) = −G

∫
BR

ρ(�r ′)
|�r − �r ′| d

3r′ for r > R . (1)

Kernel of the forward map onto the gravitational potential

Equation (1) of course represents the unique solution to the “forward prob-

lem” where one searches for a solution Φ to ∇2Φ = 4πGρ with vanishing

boundary conditions at infinity. Of key interest is the “kernel” of this (linear)

forward map, i.e. the set of mass distributions ρ supported inside BR that are

mapped to a potential Φ via Eq. (1) which identically vanishes outside BR.

Theorem 1: The kernel of the forward map Eq. (1) mapping mass distribu-

tions ρ supported in BR to solutions of Laplace equation outside the region

BR (i.e. for |�r| > R) is precisely functions ρ satisfying

ρ = ∇2χ , (2)

where χ(�r) is any (sufficiently smooth) function on R
3 with support inside BR

(i.e. χ(�r) = 0 for r > R). In other words, if ρ is a solution of the inverse

problem for a given exterior potential Φ, then ρ + ∇2χ is also a solution for

any χ ∈ C0
α(BR), where α is a sufficiently large integer. Normally, α ≥ 2

should be sufficient, but smoothness is not a key issue; in particular, χ can

even be a distribution if point-mass (delta-function) singularities need to be

allowed in the problem.

Proof in one direction is easy: Every function in the kernel is given by the

forward image of a function of the kind Eq. (2). To prove this, let Φ be a

function belonging to the kernel, i.e. let Φ vanish outside BR. Put

χ ≡ 1

4πG
Φ .

Then χ ∈ C0
α(BR) and ρ ≡ ∇2χ satisfies the Laplace equation ∇2Φ = 4πGρ

everywhere (with vanishing boundary conditions at infinity). Therefore, Φ

satisfies Eq. (1) with this ρ, which is what we needed to prove.

Conversely, let ρ be a density distribution supported inside BR such that

ρ = ∇2χ for some χ ∈ C0
α(BR). Then, according to Eq. (1), the gravitational

potential Φ which the forward map sends ρ onto satisfies

Φ(�r) = −G

∫
BR

∇2χ(�r ′)
|�r − �r ′| d

3r′ for r > R . (3)
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To show that the right hand side of Eq. (3) is in the kernel of the forward map,

i.e., that it vanishes for r > R, use Green’s identity:∫
B

(U∇2V − V∇2U) d3r =

∫
∂B

(
U
∂V

∂n
− V

∂U

∂n

)
dσ , (4)

where B is any region bounded by the surface ∂B, and U, V are arbitrary

functions on R
3. Applying Eq. (4) with B taken as the region BR, U(�r ′) ≡

1/|�r−�r ′|, and V (�r ′) ≡ χ(�r ′), and noting that ∇2(1/|�r−�r ′|) = 0 when r > R

and r′ < R, it immediately follows that the right hand side of Eq. (3) vanishes

outside BR (i.e. for r > R). This completes the proof of Theorem 1.

A geometric interpretation of the kernel:

One way to conceptualize the kernel of the gravitational (potential) forward

map is to note that the geometric freedom of choice in the inverse “datum”

Φ(�r) is that of choosing an arbitrary function on the two-sphere S2 (compare

also [5], Chapter 1):

Theorem 2: Let Φ(�r) be any solution of the free-space Laplace equation

∇2Φ = 0 outside the region BR which vanishes at infinity, as in the formulation

of the gravitational inverse problem. Then Φ is completely determined outside

BR by its values on any two-sphere SR1 of radius R1 > R (or, more generally,

by its values on any closed surface which encloses BR).

Proof: This is really a restatement of a standard result in potential the-

ory (uniqueness of solutions to the Dirichlet problem): There exists a unique

Green’s function G(�r, �r0), defined for �r, �r0 outside BR1 , such that G satisfies

∇2G(�r, �r0) = δ(�r − �r0) and vanishes for �r ∈ SR1 and for �r ∈ S∞ [as discussed,

e.g., in [6], for the two-sphere SR1 G(�r, �r0) can be constructed explicitly using

the classic “method of images”]. Plugging such a G(�r, �r0) into Eq. (4) as V

and taking Φ(�r) as U and the region B as the region outside BR1 we obtain,

by virtue of the vanishing boundary conditions at infinity,

Φ(�r0) =

∫
SR1

Φ(�r)
∂G(�r, �r0)

∂n
dσ . (5)

Therefore Φ everywhere outside BR1 is determined uniquely by its values on

the two-sphere SR1.

We can now understand the kernel Eq. (2) in the following way: Since the

data for Φ consist of the values of a function defined on a two-surface SR1 ,

we can infer from these data uniquely at the most another function of two
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variables, and not the full three-dimensional density field ρ(�r). In fact, the

forward kernel (or the ambiguity in the corresponding inversion) as described

by Eq. (2) corresponds precisely to this geometric statement.

Weighing the shape of a body of known radial density

One might hope that practical (physical) prior constraints on the three-

dimensional density distribution ρ(�r) might make it uniquely recoverable from

its far-zone gravity field despite the fundamental non-uniqueness of the inverse

problem. For example, we want the density to be positive everywhere, which is

a requirement that constrains the ambiguity Eq. (2) to some extent. However,

simple spherically-symmetric counterexamples show that positivity is not a

sufficiently strong constraint to help provide us with a unique inversion. As the

next step in a series of physically-reasonable constraints on ρ, we might assume

a known positive radial density distribution with profile ρ(�r) ≡ ρ0(r) > 0

distributed on some arbitrary compact three-dimensional region D in R
3. Put

another way, such a density profile represents a body of arbitrary shape carved

out of a spherically symmetric (hence spherical) mass distribution. Again,

counterexamples based on hollow spherical shells show that this is not quite

enough for unique inversion. Nevertheless, it turns out that if we further

constrain the region D such that it is connected and has no “holes” (i.e., if D

is topologically a ball), and, furthermore, if D is “radially convex” in a sense

made precise below, then unique inversion is possible:

Theorem 3: Let D be compact region in R
3 such that its boundary ∂D is a

connected and simply-connected surface (in other words, ∂D is a topological

two-sphere) which is radially convex in the sense that any straight line in R
3

passing through the center-of-mass of the volume D intersects ∂D at precisely

two points. Assume that D is filled with material of a known positive mass

density ρ(�r) which is distributed spherically-symmetrically with respect to the

coordinate origin given by the center of mass. That is, if �r lies inside D, then

ρ(�r) = ρ0(r) > 0, and if �r is outside D, then ρ(�r) = 0. Under these conditions,

D itself (or, equivalently, its boundary ∂D) is uniquely recoverable from the

far-zone gravity field of this radial density distribution.†

This result is not too surprising in view of Theorem 2, since the specification

of ∂D entails just a single real function on the two-sphere S2 (measuring just

†The assumption that ∂D is a topological two-sphere is redundant since it follows from
the assumption of radial convexity as formulated in the theorem. However, it is perhaps
useful to emphasize this assumption in a redundant statement since the theorem is certainly
false without it.
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how much we need to deform S2 in order to stretch it onto ∂D). The forward

map Eq. (1) can then be interpreted as a nonlinear map from real functions on

S2 (representing the deformations of S2 needed to obtain ∂D) to real functions

on S2 (representing the values of the potential Φ on SR), and we will now show

that this map is locally one-to-one.

Proof of Theorem 3: The main idea of the proof is simple: explicitly write

down, in terms of spherical-harmonic coefficients, the forward transform map-

ping the “shape function” of ∂D to the exterior potential Φ, and show that

the derivative of this nonlinear forward map is nonsingular. The result then

follows from the inverse function theorem as generalized to infinite-dimensional

spaces [1, 8] given appropriate topologies on the domain and target spaces of

the map to make it continuous. In this paper we will give a detailed proof

that the forward map has nonsingular (and bounded) derivative at the point

(shape) which corresponds to a perfect sphere, so the result holds for shapes

which are nearby distortions of a perfect sphere (in other words, we will ex-

plicitly prove that the forward map is invertible in some open neighborhood

of the perfect sphere in the space of all shapes D which satisfy the conditions

of the theorem). This case covers most planetary bodies at the levels of reso-

lution we are interested in. Nevertheless, the statement that the forward map

is nonsingular everywhere remains valid, although we are not going to give an

explicit proof of it here. The proof of this more general case is substantially

similar apart from requiring more careful estimates.

To proceed with the proof, introduce a spherical coordinate system (r, θ, φ)

centered at the center of mass of the volume D. In this coordinate system,

let n(θ, φ) denote the half-line which starts at the origin and expands outward

in the direction (θ, φ). Let ψ(θ, φ) be the (positive) function which gives the

length of the radial vector which starts at the origin and ends at the intersection

point of the line n(θ, φ) with the boundary ∂D as (θ, φ) ranges over the unit

two-sphere S2 of all possible directions [by the radial convexity assumption,

there exists a unique such intersection point for each direction (θ, φ)]. The

function ψ(θ, φ) can then be taken to be the “shape function” which specifies

D, and, explicitly, we can write

D = {(r,Ω) | r ≤ ψ(Ω)} , (6)

and

∂D = {(r,Ω) | r = ψ(Ω)} , (7)

where we introduced the short-hand notation Ω ≡ (θ, φ) for the angular coor-

dinates. The exterior gravitational potential Φ can be expanded in spherical
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harmonics[6]:

Φ(�r) =
∑
l,m

dlm
Ylm(Ω)

rl+1
for r > R > max

Ω
ψ(Ω) , (8)

where we can regard {dlm} ≡ D as an infinite sequence (vector) of “observ-

ables” which completely describes the data for the inverse problem in view of

Theorem 2. On the other hand, according to Eq. (1), for r > R > maxΩ ψ(Ω)

we have

Φ(�r) = G

∫
r′<ψ(Ω′)

ρ0(r
′)

d3r′

|�r − �r ′|

= G

∫ ψ(Ω′)

0

ρ0(r
′) r′2 dr′

∫
S2

∑
l,m

r′l

rl+1
Ylm(Ω)Y ∗

lm(Ω′) dΩ′

= G
∑
l,m

Ylm(Ω)

rl+1

∫
S2

Y ∗
lm(Ω′) μl+2 (ψ(Ω′)) dΩ′

= G
∑
l,m

flm[ψ]
Ylm(Ω)

rl+1
, (9)

where

μn(w) ≡
∫ w

0

ρ0(r) r
n dr , (10a)

and

flm[ψ] ≡
∫
S2

Y ∗
lm(Ω) μl+2 (ψ(Ω)) dΩ (10)

is a vector functional of the shape function ψ which represents the forward

map in the same way as D = {dlm} represents the data. In fact, introducing

the notation F[ψ] ≡ {flm[ψ]} and combining Eqs. (8) and (9), the forward

equation for the shape function ψ takes the simple form

F[ψ] =
1

G
D . (11)

(Due to our choice of origin as the center of mass, both flm and dlm vanish for

l = 1, but this fact will not be of any consequence in what follows.) It is also

convenient to introduce a coordinatization of the space of shape functions via

a spherical harmonic expansion

ψ(Ω) ≡
∑
l,m

slmYlm(Ω) , (12)
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and consider the coordinate vector S ≡ {slm} as the representation of the

function ψ(Ω). In this coordinate system the forward map Eq. (11) takes the

form

F[S] =
1

G
D , (13)

where

flm[S] ≡
∫
S2

Y ∗
lm(Ω) μl+2

(∑
p,q

spqYpq(Ω)

)
dΩ . (14)

Assume now, contrary to the conclusion of Theorem 3, that two distinct do-

mains D1 and D2 constrained as in the statement of the theorem give rise

to identical external gravitational potentials when filled with the given radial

density distribution ρ0(r). First of all, since the monopole and dipole moments

of the two mass distributions must agree, they must have the same center of

mass, therefore we can set up a common spherical coordinate system for both

volumes with their shared center of mass chosen as the origin of coordinates.

It then follows that there exist two distinct shape functions ψ1 and ψ2, corre-

sponding to the two distinct volumes D1 and D2, which satisfy Eq. (11) with

the same data D; in other words

F[ψ2] = F[ψ2] . (15)

We will now show that Eq. (15) is impossible as long as ψ1 and ψ2 belong to

some fixed open neighborhood of a perfect sphere {ψ(Ω) ≡ a0 = const} in

the infinite-dimensional nonlinear function space of all ψ’s. Using the inverse

function theorem as generalized to such infinite-dimensional manifolds [1, 8],

it is sufficient to show that the derivative of the map F at the point ψ(Ω) ≡ a0

is a nonsingular, bounded (continuous) linear map. In general, at an arbitrary

point ψ = ψ0(Ω), this derivative is given by

(F′[ψ0(Ω)] · δψ)lm =

∫
S2

Y ∗
lm(Ω) ρ0 (ψ0(Ω)) ψ0(Ω)l+2 δψ(Ω) dΩ , (16)

where F′[ψ0(Ω)] denotes the derivative evaluated at the point ψ = ψ0, acting

(as a linear map) on the tangent vector (linear perturbation) δψ, and we have

used Eq. (10) to derive this explicit form. Specializing to the perfect sphere

ψ0(Ω) = a0(= const) and using the coordinate representation [cf. Eq. (12)]

δψ(Ω) ≡
∑
p,q

δspqYpq(Ω) , δS ≡ {δspq} , (17)
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Eq. (16) takes the form

(F′[a0] · δS)lm = ρ0(a0) a0
l+2

∫
S2

Y ∗
lm(Ω)

[∑
p,q

δspqYpq(Ω)

]
dΩ

= ρ0(a0) a0
l+2δslm , (18)

where we made use of the fact that the Ylm’s form an orthonormal basis for

L2(S2). According to Eq. (18), the derivative F′[a0] is a diagonal linear map

with only nonzero entries (eigenvalues) on the diagonal; therefore, F′[a0] is

clearly nonsingular.

To complete the proof of Theorem 3, all we have left to do is to choose

topologies on the tangent space to the space of shapes spanned by δS ≡ {δspq}
and the tangent space to the space of data {dlm} ≡ D between which the lin-

ear map F′[a0] acts, such that F′[a0] is a continuous, or, equivalently, bounded

map. But since F′[a0] is a diagonal linear map in the coordinate basis Eq. (12)

with only nonzero eigenvalues, it is trivial to choose norms in its domain and

range so that F′[a0] is bounded with, say, unit norm (just choose inner prod-

ucts under which the image and target bases are orthonormal). Upon complet-

ing these two spaces under these norms to make them into Banach (indeed,

Hilbert) spaces, the inverse function theorem as formulated, e.g., in Theorem

5.2 of [8] applies, and we are done.‡

The kernel of the forward map onto gravity gradient observables

The gravitational gradient tensor is (apart from a minus sign) simply the

(symmetric) tensor of second derivatives of the potential Φ in a Cartesian

coordinate system:

Tij ≡ − ∂2Φ

∂xi∂xj
. (19)

So, for example, we have

Txx = −∂
2Φ

∂x2
, Tyz = − ∂2Φ

∂y ∂z
(20)

etc. Independently of coordinates, the gradient tensor can be defined as the

double covariant derivative ∇∇Φ (in general relativity, Tij corresponds to the

Riemann curvature tensor R0i0j describing tidal gravitational forces). One can

‡Notice, however, that the inverse map is only guaranteed to be continous with respect
to the Banach-manifold topologies determined by the (somewhat arbitrarily) chosen norms.
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also define the gradient tensor explicitly in terms of the source mass distribu-

tion as:

Tij(�x) = G

∫
ρ(�y) [ 3 (xi − yi)(xj − yj) − δij |�x− �y|2 ]

|�x− �y|5 d3y , (21)

where all coordinates are Cartesian. The gradient tensor is a particularly

useful observable in precision gravimetry since it is better isolated from local

non-gravitational acceleration noise compared to other observables, and a large

roster of instruments (gradiometers) are available for measuring it.

In practical applications, one often works with a coordinate system where

z is the vertical coordinate pointing up from the Earth’s center, and the ob-

servable of interest is the x—y projection of the gradient tensor in an infinites-

imally small neighborhood (tangent plane to the Earth’s spherical surface)

around x = y = 0:

T ≡
(
Txx Txy
Txy Tyy

)
(22)

Typically, a gradiometer takes two kinds of measurements: the component

M× ≡ 2Txy (“crossline”), and the combination M+ ≡ Txx − Tyy (inline). The

choice of Cartesian x, y coordinates is arbitrary upto a rotation R, and T

transforms under rotations as

T −→ RTRt . (23)

Neither T nor its crossline or inline components are invariant under rotations,

but Tr(T) and Det(T) are invariants. In particular, the Euclidean norm of

(M+,M×) √
M2

+ +M2× =
√

Tr(T )2 − 4 Det(T ) (24)

is an invariant. More specifically, it is easy to compute that (M+,M×) trans-

forms under a rotation

Rθ =

(
cos θ − sin θ

sin θ cos θ

)
(25)

according to the rule (
M+

M×

)
−→ R2θ

(
M+

M×

)
. (26)
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Now, define a new observable

V ≡ M2
+ +M2

× . (27)

In other words, V is defined at every point of R
3 by setting up local coordinates

x, y, z such that the z-axis goes through the origin, computing the gradient

tensor T as in Eqs. (19) and (22) at that point, and then calculating the norm

square of the observable (M+,M×). The key features of V are that (i) it

is invariant under rotations, therefore uniquely defined independently of the

choice of coordinates, and (ii) it obeys the following lemma:

Lemma: V vanishes at a point if and only if (M+,M×) vanishes there for any

allowed choice of coordinates x, y, z.

Proof: By Eq. (11), V is invariant and equal to the norm-square of (M+,M×)

for any choice of coordinates.

Therefore the kernel of the coordinate-dependent observable (M+,M×) is

precisely the kernel of the nonlinear but coordinate-independent observable V .

Theorem 4: Let F [Φ] be any analytic functional (linear or nonlinear) of the

gravity potential Φ (such as V ), and let S be any analytic 2-surface lying

outside the spherical region BR = {�r : |�r| < R} in R
3 (such as a sphere of radius

> R). Then, if F [Φ] vanishes in any open (two-dimensional) neighborhood on

S, it vanishes identically on all of S.

Proof: This just follows from analyticity: Φ is an analytic function outside the

spherical region BR = {�r : |�r| < R} in R
3 since it satisfies the homogeneous

Laplace equation there (analyticity follows from standard elliptic regularity

theorems [4]). Therefore, F [Φ] is analytic there and so is its restriction to

S since S is analytic. Thus vanishing on any open subset is equivalent to

vanishing identically on S.

Corollary: If V vanishes in any two-dimensional patch, no matter how small,

on any analytic observation surface S lying outside the spherical region BR =

{�r : |�r| < R}, then it vanishes identically on all of S.

This corollary further illustrates the fact that the kernel of the gravity-

gradient observable (M+,M×) is precisely the kernel of the observable V , not

only locally but also globally.

Theorem 5: Let S be a sphere of radius > R. Then V vanishes on S if and

only if Φ is spherically symmetric (a function of the radius r only), and hence V

vanishes identically everywhere outside the spherical region BR = {�r : |�r| < R}
in R

3.
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Proof: The if part is a simple calculation: It is straightforward to compute

that both M+ and M× vanish for a radial (monopole) potential function Φ(r).

For the converse, it is easy to see that if V vanishes on a sphere S then this

implies that Φ is constant on S. But this implies, according to Eq. (5) (or just

by the uniqueness of solutions to the Dirichlet problem), that Φ is a radial

function of monopole type:

Φ(�r) =
C

r
, (28)

where C is a constant.

We can now completely characterize the kernel of the forward map from

the mass density to the gravity gradient observables (M+,M×):

Theorem 6: The kernel of the forward map mapping mass distributions ρ

supported in BR to gravity gradient observables (M+,M×) outside the region

BR (i.e. for |�r| > R) is precisely functions ρ supported in BR satisfying

ρ = ρ0 + ∇2χ , (29)

where χ(�r) is any (sufficiently smooth) function on R
3, and ρ0 is any spherically

symmetric function, both supported inside BR (i.e., both χ(�r) and ρ0(�r) vanish

for r > R).

Proof: By Theorem 5, the kernel of the map from mass distributions to

outside gradients (M+,M×) consists of those mass distributions that give rise

to spherically symmetric potentials Φ outside BR. If Φ is spherically symmetric

outside BR, then consider ΦS , the spherical average of Φ (i.e. ΦS(�x) = the

average of Φ on the sphere centered at 0 and passing through �x). Then ΦS is

spherically symmetric everywhere and coincides with Φ outside BR. Therefore

χ ≡ Φ − ΦS vanishes outside BR, and thus

∇2Φ = ∇2χ+ ∇2ΦS . (30)

Since ΦS is everywhere spherically symmetric, so is ∇2ΦS, and Theorem 6

follows.

Kernel of the gravitational forward map and discretization

In practice, gravity inversion is a discrete problem because (i) the measure-

ments of Φ (or of the gradients) are finitely many and discretely distributed in

space, and (ii) more problematically, the model for the mass distribution ρ is
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some discretized approximation to a continuous distribution. In all contexts,

the characterization of ρ would be a finite list of parameters which uniquely

specify ρ in some generally non-linear fashion. For example, these ρ parame-

ters could be the masses, locations, and shape parameters of a finite number

of tectonic plates in a geophysical model of the Earth’s crust. Or, as discussed

above, they could be masses of finite blocks into which we divide the source

distribution in discretizing it. Or, more straightforwardly, they could be the

masses of N point-mass centers distributed throughout the source region, ap-

proximating with a discrete configuration the true mass distribution in the

limit N → ∞.

In general, the practical, the discretized gravitational inverse problem is

the problem of inverting some (generally nonlinear) forward map:

F : {pj} 	−→ {Φi} , Φi = Fi[pj] , (31)

where pj are finitely many parameters specifying the mass distribution, and Φi

are the measurements. It would be conceptually salutary to have the funda-

mental non-uniqueness in the gravitational inverse problem (the kernel of the

forward map) described by Theorem 1 to fall out of the formulation Eq. (31

) in a natural way. For example, when we simulate a slab of soil using some

large number of mass centers regularly placed at fixed lattice points inside the

slab, the parameters pj are simply the point masses mj assigned to each center

at lattice location j. In this case, the forward map F is in fact linear:

Φi =
∑
j

Fijmj , (32)

where the matrix Fij is the Green’s function in Eq. (1) in discretized form:

Fij = −G 1

|�ri − �rj | , (33)

with �ri being the locations where the measurements Φi ≡ Φ(�ri) are collected.

Consider first, for simplicity, a scenario in which we are sampling Φ at the

same number of points N as the number of mass centers in the discretization.

In other words, F is now a square N ×N matrix. In view of Theorem 1 char-

acterizing the kernel of the forward map, one might expect F to be singular,

with the null space corresponding to a discretized version of the kernel, i.e., a

discrete approximation to functions of the form ∇2χ with χ supported inside

the slab. It turns out, however, that the matrix F given by Eq. (33) is in fact

generically nonsingular. Moreover, the M×N matrix F with M measurement

locations and N mass centers is also nonsingular, in the sense that generically

it has maximal rank (i.e. trivial null space).
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It is in fact easy to see why this is so, because of the following result:

Theorem 7: Given a solution Φ(�r) of the Laplace equation ∇2Φ = 0 vanishing

at infinity and defined for r > R, there exists at most one configuration {mj, �rj}
of finitely many point masses placed inside BR = {r ≤ R} (i.e. with mj ∈ R

and |�rj| ≤ R) that can give rise to this Φ for r > R.

Proof: Suppose, on the contrary, that there are two configurations of point

masses, {mj, �rj} and {m′
k, �rk

′}, that produce the same Φ for r > R. Subtract

the second configuration from the first, and correspondingly subtract the Φ

fields that they produce. Since the gravity field depends linearly on the mass

distribution, what we obtain is a new configuration {m1, · · · , mN ,−m′
1, · · · −

m′
N ′ , �r1, · · · , �rN , �r1′, · · · , �rN ′ ′} of point masses inside BR (unless there are some

coincident point masses in the two collections, in which case one would simply

subtract the corresponding masses and list the location only once), which

produces a field Φ that vanishes identically for r > R. Could this actually

happen? It turns out the answer is no, unless Φ is identically zero everywhere

(and therefore the two original point-mass configurations are in fact identical).

To see this, observe that Φ produced by a finite set of point masses is a real-

analytic function in R
3 except at the locations of the point masses where it

has singularities. Since Φ vanishes for r > R and is analytic, it must vanish

everywhere in R
3 except possibly at the mass centers. But if any of the mass

centers had non-zero mass, we could choose points so close to that center that

the contribution to Φ from that center would overwhelm the contributions

from any other centers (which are discretely spaced since there are finitely

many). This clearly contradicts the fact that Φ is identically zero in any small

neighborhood of the chosen mass-center. Therefore, none of the mass centers

can have nonzero mass; the two original configurations of point masses must

be identical, and Theorem 7 is proved.

Here is one way to understand the apparent conflict between Theorem 1

and Theorem 7: Consider the two spaces between which the forward map F

acts: the space of density distributions ρ and the space of potentials Φ. Any

discretization is an attempt to approximate these spaces via a sequence of

finite-dimensional subspaces. For example, when we use N point masses, we

have an N -dimensional subspace of the space of all ρ, and as N gets larger

and larger this subspace approximates the full space arbitrarily closely, in the

sense that for any ρ0, we can find a configuration of N point masses (with large

enough N) which comes as close as we want to ρ0 (in some locally averaged

sense). The same goes for the corresponding potentials Φ: given any solution

Φ0, we can find potentials produced byN point masses that get arbitrarily close

to Φ0 as N → ∞. But the problem is that these approximating subspaces
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completely miss the kernel of the true forward map, which is the subspace

of mass distributions (and corresponding potentials) given by {∇2χ | χ ∈
C0(BR)}. The intersection of the approximating subspaces with this kernel

subspace is the zero vector, for any finite N . This is (mathematically) the

explanation for the apparent contradiction between Theorem 1 and Theorem

7.

To resolve this apparent conceptual paradox, one might argue that we must

choose the approximating finite dimensional subspaces in such a way that they

fully intersect the kernel. But in practice, there is no feasible way to discretize

the problem that makes sure this property holds. There is, however, a much

simpler practical strategy out of this apparent paradox, and this is the strategy

we advocate: Realize that true measurements in the real world always have

instrumental noise. What this means is that two potentials are indistinguish-

able in practice if they differ everywhere by less than, say 1σ worth (in some

arbitrary units) of instrumental noise. Therefore, e.g. when we look for the

intersection between the kernel and our discretized ρ-subspace with N point

masses, what we are really looking for are all N -point-mass configurations that

produce a potential Φ that differs from zero by less than 1σ throughout the

exterior region r > R. And in general there are many such configurations. We

can see this, for example, in the matrix Fij of Eq. (33): in general this ma-

trix turns out to be highly ill-conditioned (with very small determinant) with

lots of eigenvalues close to zero, even though it has no exactly-zero eigenval-

ues. And the “approximately null” subspace spanned by the small-eigenvalued

eigenspaces is precisely the discrete analogue of the kernel of the forward map;

it is what corresponds to the subspace {∇2χ | χ ∈ C0(BR)} in this discretiza-

tion. We expect a similar description for the discrete analogue of the forward

map’s kernel in any other practical discretization scenario.
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