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ABSTRACT

Statistical postprocessing of numerical model output can improve forecast quality, especially when model
output is combined with surface observations. In this article, the development of nonlinear postprocessors
for the prediction of ceiling and visibility is discussed. The forecast period is approximately 2001–05,
involving data from hourly surface observations, and from the fifth-generation Pennsylvania State Univer-
sity–National Center for Atmospheric Research Mesoscale Model. The statistical model for mapping these
data to ceiling and visibility is a neural network. A total of 39 such neural networks are developed for each
of 39 terminal aerodrome forecast stations in the northwest United States. These postprocessors are com-
pared with a number of alternatives, including logistic regression, and model output statistics (MOS)
derived from the Aviation Model/Global Forecast System. It is found that the performance of the neural
networks is generally superior to logistic regression and MOS. Depending on the comparison, different
measures of performance are examined, including the Heidke skill statistic, cross-entropy, relative operating
characteristic curves, discrimination plots, and attributes diagrams. The extent of the improvement brought
about by the neural network depends on the measure of performance, and the specific station.

1. Introduction

Coastal locations around the United States are sus-
ceptible to marine stratus and low ceilings. Occasion-
ally, the stratus extends to the surface, resulting in
dense fog conditions and a significant reduction in hori-
zontal visibility. When these adverse conditions occur,
they often disrupt daily activities, such as aviation and
shipping interests, sometimes to the point of jeopardiz-
ing human safety. It is imperative, then, to provide fore-
casters with the most accurate guidance for these high-
impact weather phenomena.

Marine stratus is especially problematic along the Pa-
cific coast of the United States during the summer

months. This is primarily because of a semipermanent
area of surface high pressure over the northern Pacific
Ocean during the summer months, the continuous flow
of relatively cool ocean waters southward along the Pa-
cific Coast via the California Current, and the warm
daytime temperatures that occur over inland locations.
When the warmer, less dense air over the land rises, it
is replaced by cooler, more dense air offshore that
moves inland and ultimately creates a large-scale circu-
lation, similar to a sea breeze. The inland extent of the
marine air depends on the differential heating of the
land and water and the resulting strength of the circu-
lation. This cycle of marine stratus development is ex-
plained in more detail by Hilliker and Fritsch (1999). In
addition, Hilliker and Fritsch (1999) displayed the fre-
quency of occurrence of these marine stratus events
through an annual number of instrument flight rules
(IFR) events at various airports across the United
States. It is shown that San Francisco International Air-
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port experiences nearly 200 IFR events per year while
Seattle–Tacoma International Airport experiences
about 125 IFR events per year.

In addition to the very common inland intrusions of
marine fog and stratus are episodes of inland basin (ra-
diational) fog. During spells of prolonged ridging over
the western United States in the cool season, shallow
layers of persistent fog form in the inner basins, includ-
ing the Columbia River basin, and the Sacramento
River valley. These events are hazardous to all kinds of
transportation and commerce, but especially to avia-
tion. Additionally, recurring winter storms bring re-
stricted flying conditions to all terminals across the Pa-
cific Northwest. These events include strong wind, rain,
fog, snow, and freezing precipitation.

Traditionally, the primary source of guidance for
forecasting surface weather conditions has been statis-
tically postprocessed numerical model output. In par-
ticular, model output statistics (MOS) derived from the
Nested Grid Model (NGM) and Aviation Model/
Global Forecast System (AVN/GFS) provide forecasts
of weather parameters at 3-h intervals out to 48 or 60 h,
depending on the model.

This type of forecasting guidance has at least two
limitations: 1) the models are run only a few times daily,
allowing forecasts to become several hours old before
an updated product is made available, and 2) the MOS
equations are linear. To alleviate the first limitation,
studies have been undertaken to investigate the use of
an observations-based forecasting system (Vislocky and
Fritsch 1997). In this system, a network of surface ob-
servations is used as predictors in a multiple regression
technique. It was demonstrated that this approach
could improve the accuracy of ceiling and visibility
forecasts for the hours between the times that the out-
put from the numerical models is released. Moreover,
Leyton and Fritsch (2003, 2004) showed that the intro-
duction of high-density observation networks and high-
frequency observations lead to further improvement.

The linearity of traditional MOS equations may be a
limitation if the underlying relations are nonlinear. To
allow for more general relations, nonlinear generaliza-
tions of multiple regression have been utilized to model
any nonlinearity and interactions of the underlying pro-
cesses. Of course, the nonlinearity of the statistical
model does not prevent it from capturing linear rela-
tions as well. For example, temperature forecasts from
the Advanced Regional Prediction System have been
postprocessed via neural networks, displaying a reduc-
tion in bias and error variance of the forecasts
(Marzban 2003). There, it is found that the optimal
neural network is indeed nonlinear. As such, the non-
linear statistical postprocessing yields temperature

forecasts that are more accurate than the model fore-
casts as well as MOS forecasts. Some recent applica-
tions of neural networks include nowcasting of visibility
from surface observations (Pasini et al. 2001), predic-
tion of snowfall (Roebber et al. 2003), and fog forecasts
at an airport in Brazil (Costa et al. 2006).

Here, these two solutions have been combined to
produce superior forecasts. In other words, a nonlinear
postprocessor has been developed that takes as input
(i.e., predictors) not only model data but also surface
observations, and it produces forecasts of ceiling and
visibility. In fact, 39 postprocessors are developed for
39 terminal aerodrome forecast (TAF) stations. TAF
forecasters rely heavily on statistical postprocessors,
because not all of the parameters included in TAFs are
directly output by numerical weather prediction mod-
els. Specifically, explicit information about visibility,
cloud, and fog layers is generally absent. Forecasters
thus rely on experience, climatology, and statistical
tools. The numerical model for which postprocessors
are developed is the fifth-generation Pennsylvania
State University–National Center for Atmospheric Re-
search Mesoscale Model (MM5). The MM5 real-time
mesoscale weather prediction system run by the North-
west Modeling Consortium and the University of
Washington is one of the longest-running and mature
regional modeling efforts in existence (Grimit and Mass
2002). The statistical model underlying these postpro-
cessors is a neural network (NN). In what follows, the
development of these NNs is outlined in detail, and it is
shown that their performance is generally superior to
that of logistic regression and MOS derived from the
GFS, with the extent of the improvement dependent on
the measure of performance and the specific station. As
shown below, the exceptions include stations where in-
sufficient data exist for a proper development of a non-
linear postprocessor.

2. Data

Three datasets are employed. The first dataset is an
archive of standard hourly surface [Automated Surface
Observing System (ASOS) and Automated Weather
Observing System (AWOS)] data, also acquired from
the National Center for Atmospheric Research
(NCAR). This dataset includes reports of temperature,
dewpoint, wind speed and direction, cloud cover, vis-
ibility, and precipitation. The surface observations em-
ployed for the analysis span the dates 7 November
2001–31 January 2005. Although the data are available
on an hourly basis, only the 0000 UTC values are used,
except for ceiling and visibility, which are used at 0600
and 1200 UTC—the valid times.

The second dataset is an archive of MM5 data. The
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MM5 has been run at the University of Washington on
a twice-daily basis since late 1997. The standard con-
figuration includes a triple nest of 36-, 12-, and 4-km
grids. The current configuration consists of a 12-km
grid that covers a broad area of the Pacific Northwest,
extending from western Montana to the coast and
southward to northern Nevada and California. An ar-
chive of 12-km runs provides the model data used in the
study. The model data were archived for the period 7
November 2001–31 March 2005, and were used every 6 h.
Here, the 0000 UTC runs of the MM5 were employed.

The last dataset consists of MOS forecasts derived
from the GFS model, spanning the dates 1 November
2001–28 February 2005.1 MOS forecasts are issued at
0000 UTC, are categorical, and are available every 6 h.
This dataset is utilized as a benchmark for comparing
the performance of the neural network.

The categories for ceiling and visibility are given in
Table 1. The categories defined in MOS are finer, and
so, in order to compare the neural nets developed here
with MOS, the categories in the latter are combined
into larger categories that coincide with those adopted
here.

The list of the TAF stations (and their station iden-
tifiers) for which specific neural nets are developed is
given in Table 2. They are scattered across Washington,
Oregon, Idaho, Montana, Nevada, and California; see
Fig. 1.

3. Methodology

Recently, there has been a surge of interest in the use
of NNs among meteorologists (Hsieh and Tang 1998).
Among the numerous applications, postprocessing of
model output has been beneficial (Casaioli et al. 2003;
Marzban 2003). Given that NNs belong to the class of
nonlinear statistical models, the postprocessing activity
can be considered a nonlinear version of MOS. Al-
though the choice of a nonlinear method is not unique,
NNs are generally useful because in addition to being
able to approximate a large class of functions, com-
pared with many other models, they are less prone to

overfit data. Overfitting can occur when a statistical
model has sufficient flexibility to fit features in the data
that are purely statistical fluctuations. As such, a statis-
tical model that has overfit some dataset is likely to
perform poorly on data not represented in that dataset.
The number of parameters in a statistical model is one
measure of model flexibility, and so a model with too
many parameters is more likely to overfit a dataset than
another model with less parameters. For example, the
number of parameters in polynomial regression grows
exponentially with the number of independent vari-
ables (i.e., predictors); by contrast, for NNs the growth
is only linear.

The prediction of ceiling and visibility can be cast
into a classification problem. The NN is designed to
produce a probability of belonging to one of the classes/
categories shown in Table 1, given the atmospheric con-
ditions at the time; the latter are quantified by the pre-
dictors, namely the model output variables and surface
observations.

The development of the NNs requires substantial
preprocessing of the data. Seasonal cycles in the data
are removed by subtracting the monthly average of
each variable from the data on that variable. More so-
phisticated techniques (e.g., seasonal differencing) for
filtering out periodicity were examined, but showed no
significant difference. Outliers are removed by simply
excluding any data beyond 5 standard deviations of the
mode. For variables with highly skewed distributions,
outliers are identified visually. Square-root and cube-
root transformations are applied to the inputs to render
their distribution more normal. Pairwise correlations
between the predictors are employed to exclude one
member of highly correlated pairs. Principal compo-
nents of the data were considered as inputs to the NN,
but no significant improvement was detected.

After this preprocessing, 20 predictors remain, and
the surviving sample size is 878. The predictors are nor-
malized in the manner of z scores (i.e., the mean of each
variable is subtracted from each case, and the result is
divided by the standard deviation of that variable). Jit-
ter (or Gaussian noise) with a mean of 0 and standard
deviation of 0.2 is added to each variable. To inflate the
sample size, this is repeated 10 times, increasing the
sample size from 878 to 8780.2

1 The data archive for MOS_NGM is highly incomplete, and for
that reason, the NNs will be compared with the MOS_GFS fore-
casts for which the data archive is quite complete.

2 This manner of increasing sample size may seem like trickery;
however, it is a relatively standard technique in nonlinear mod-
eling, with the sole purpose of restraining overfitting. The choices
of 0.2 for the standard deviation of the jitter, and 10 for the
multiplication factor, are based on trial and error. The final results
are generally insensitive to the specific values of these quantities.
See, for example Koistinen and Holmstrom (1992).

TABLE 1. The categories for ceiling and visibility adopted here.

Class (category) Ceiling [ft (km)] Visibility [mi (km)]

1 �500 (0.15) �1 (1.61)
2 500–1000 (0.15–0.30) 1–3 (1.61–4.83)
3 1000–3000 (0.30–0.91 km) �3 (4.83)
4 �3000 (0.91)
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Some NN-specific matters are as follows. The num-
ber of input nodes is 20, and the number of output
nodes is four or three, respectively, for ceiling or vis-
ibility. The number of hidden nodes is determined via
bootstrapping. In its simplest version, bootstrapping
calls for repeated partitioning of the data into a training
set and a validation set. The number of hidden nodes is
taken to be that which minimizes the average of the
validation errors over the bootstrap trials. The number
of bootstrap trials is four. Given the small number of
bootstrap trials, the statistical significance of some of
the results found here cannot be established. The re-
sults from the four bootstrap trials are often displayed
separately, and should be interpreted as a rough esti-
mate of the sampling variation.

One way of displaying many of these quantities is
through a “TV diagram” (Marzban 2000), which is basi-
cally a scatterplot of training and validation perfor-
mance numbers for different hidden nodes and differ-
ent bootstrap trials (e.g., Fig. 6).

The activation functions for all the nodes is the lo-
gistic function, and the error function being minimized
is cross-entropy (a generalization of mean-squared er-
ror, but appropriate for categorical data). This setup
assures that the outputs of the NN represent the pos-
terior probability of belonging to a certain category of
ceiling or visibility, given the inputs. In other words, the
outputs of the NN are forecast probabilities.

FIG. 1. A map of the 39 TAF stations superimposed over the
northwest region of the United States.

TABLE 3. List of the predictors after variable selection.

x1 Sea level pressure (PSEALVLC)
x2 Temperature at 2 m (T2)
x3 Mixing ratio at 2 m (Q2)
x4 Wind u component at 10 m (U10)
x5 Wind � component at 10 m (V10)
x6 Tot precipitation since initialization (RAINTOT)
x7 Geopotential height at 850 mb (H)
x8 Mixing ratio at 850 mb (Q)
x9 Temperature at 850 mb (T)
x10 Wind u component at 850 mb (U)
x11 Wind � component at 850 mb (V)
x12 Sine of Julian day (sin)
x13 Cosine of Julian day (cos)
x14 Sky
x15 Precipitation occurrence (Precip)
x16 Wind direction (Wind_D)
x17 Wind speed (Wind_S)
x18 Dewpoint
x19 Dewpoint depression
x20 Relative humidity

TABLE 2. List of TAF stations.

Arcata, CA KACV Moses Lake, WA KMWH
Walla Walla, WA KALW Whidbey, WA KNUW
Astoria, OR KAST Olympia, WA KOLM
Boeing Field (Seattle), WA KBFI Paine Field (Everett), WA KPAE
Baker City, CA KBKE Pendleton, OR KPDT
Bellingham, WA KBLI Portland International Airport, OR KPDX
Burns, OR KBNO Pasco, WA KPSC
Boise, ID KBOI Redding, CA KRDD
Crescent City, CA KCEC Redmond, OR KRDM
Port Angeles, WA KCLM Seattle–Tacoma International Airport, WA KSEA
Coeur d’Alene, ID KCOE Felts Field (Spokane), WA KSFF
The Dalles, OR KDLS Fairchild Air Force Base, WA KSKA
Wenatchee, WA KEAT Salem, OR KSLE
Elko, NV KEKO Sun Valley, ID KSUN
Eugene, OR KEUG McChord, WA KTCM
Geiger Field (Spokane), WA KGEG Troutdale, OR KTTD
Hoquium, WA KHQM Twin Falls, ID KTWF
Klamath Falls, OR KLMT Winnemucca, NV KWMC
Medford, OR KMFR Yakima, WA KYKM
Missoula, MT KMSO
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As mentioned previously, for some stations the oc-
currence of the lowest ceiling and visibility classes is
extremely rare. So rare, in fact, that no satisfactory NN
can be developed. For these stations, categories of ceil-
ing (and visibility) are combined to render it binary; the
highest category is considered as a distinct class, and the
remaining categories are combined into a second class.
The NNs based on this revised dataset are referred to as
“two class,” and the NNs based on the noncombined

classes are labeled as “four class” or “three class,” de-
pending on whether the predictand is ceiling or visibil-
ity, respectively.

The performance of the NN is compared with that of
logistic regression and MOS in terms of several mea-
sures of performance. For the two-class NNs, in addi-
tion to relative operating characteristic (ROC) dia-
grams, performance is gauged within the framework of
probabilistic forecasting developed by Murphy and

FIG. 2. The climatological frequency (%) of the lowest category of (left) ceiling and (right) visibility, at (top)
0600 and (bottom) 1200 UTC. The vertical lines at 5% and 10% are drawn for visual aid.

470 W E A T H E R A N D F O R E C A S T I N G VOLUME 22



Winkler (1987, 1992)—specifically, reliability, discrimi-
nation, refinement, resolution, and attributes diagrams.
Some scalar measures representing the quality of the
probabilistic forecasts are also computed, including
cross-entropy and ranked probability score. Because
MOS forecasts are categorical, some scalar (nonproba-
bilistic) measures of performance are also computed,
for example, the Heidke skill scores (HSS); this
measure has been advocated as a relatively “healthy”
measure (Marzban 1998) and has a natural generali-

zation to nonbinary classes and, so, is utilized to
asses the performance of the three-class and four-class
NNs.

Two sets of NNs are developed for two different
valid times: 0600 and 1200 UTC. The former utilize the
model predictors at 0600 UTC, and the surface obser-
vations at 0000 UTC. These NNs produce forecasts
with a lead time of 6 h. The NNs producing forecasts
with a 12-h lead time are developed on model predic-
tors at 1200 UTC, and surface observations at 0000

FIG. 3. The correlation coefficient between the predictors (Table 3) at 0000 UTC and (left) ceiling and (right)
visibility at 1200 UTC for KOLM.

JUNE 2007 M A R Z B A N E T A L . 471



UTC. These NNs produce forecasts of ceiling and vis-
ibility at 1200 UTC.3

The number of NNs developed here is unwieldy.
The 39 stations, binary and nonbinary classes, ceil-
ing and visibility, five different hidden nodes (0, 2, 4, 6,
and 8), four seeds, and 0600 and 1200 UTC forecasts
altogether yield 6240 NNs. The verification task is
even more complex because each of these NNs can
be assessed in terms of a multitude of verification

3 In principle, it is possible to arrange for model and surface
observation variables to be at 0000 UTC, while the predictand is
at the valid time. That possibility has been examined in Marzban
et al. (2006).

FIG. 4. The conditional distribution of the predictors (Table 3) at 0000 UTC, conditioned on low (black) and high (red) ceiling at 1200 UTC.
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measures. Here, only a sample of all the results is pre-
sented.

4. Results from preprocessing

The initial variables available for analysis numbered
in the hundreds. However, after the preprocessing, only
20 remain—11 from MM5 and 8 from surface observa-
tions. The final list of variables is shown in Table 3. Of
course, in addition to these predictors, the data include
measurements of ceiling and visibility at every station
and at 6-h intervals. The variables in the table are self-
explanatory; the only ones that call for further clarifi-
cation are variables 14–16. The variable “sky” refers to
sky coverage, and takes the following values: clear, few,

scattered, broken, overcast, and obscured. Variable 15
is binary and labels the occurrence or nonoccurrence of
precipitation. Wind direction is recorded as NE, E, SE,
S, SW, W, NW, and N. As a test of colinearity, the
correlation coefficients between all pairs of variables
are computed; no statistically significant correlations
are found.

As mentioned previously, for some stations the data
contain an exceedingly small number of low ceilings or
low visibilities. Figure 2 shows the climatological fre-
quency (in percent) of the lowest categories at 0600 and
at 1200 UTC.4 Low ceiling and visibility occur most

4 The stations with low climatological frequency of low ceiling
and visibility are those farther away from a body of water.

FIG. 5. HSS values according to MOS forecasts of (right) ceiling and (left) visibility, for training (black) and
validation (red) sets, separately. The error bars are derived from bootstrapping.
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frequently at KACV, KCEC, KEUG, KOLM, and
KSKA (see Table 2 for a list of station identifiers), with
some variability between 0600 and 1200 UTC. The sta-
tions at which these conditions occur least frequently
depend more strongly on the time of day: at 0600 UTC,
they are KBFI, KDLS, KEKO, KPDX, KSUN, KTTD,
KWMC, and KYKM; at 1200 UTC, they are KBKE,
KBNO, KBOI, KDLS, KEKO, KPSC, KRDD, KSUN,
KTTD, KWMC, and KYKM. The stations with the
lowest occurrence of ceiling and visibility are expected
to have poorly performing NNs.

As discussed in Marzban et al. (1999), the notion of a
“best predictor” is ill-defined, at least outside of the
framework of a statistical model. Nevertheless, this is a
natural place in the analysis to explore the relationships
among the various variables in more detail. Figure 3
shows the linear correlation coefficient between each of
the predictors at 0000 UTC and the predictands—
ceiling and visibility—at 1200 UTC for KOLM. Evi-
dently, all of the predictors of ceiling have generally
equal strength (within the error bars). The exceptions
are T2, Q2, and Q, which have near-zero correlation
with ceiling. However, this does not imply that they are
poor predictors as far as the NN is concerned, because,
first, their correlations may be nonlinear, and second,
their interaction with the other variables may be im-
portant for predicting ceiling. This is why they are not
excluded as inputs to the NNs. The best predictors of
visibility again have comparable strength, with the ex-
ception of sky (sky coverage), which is highly corre-
lated with visibility. The weakest predictors are T2 and
dewpoint, but they are not excluded from the analysis
for the aforementioned reasons. In short, for these rea-
sons, further expounded upon in Marzban et al. (1999),
no attempt is made to perform any variable selection
prior to NN development.

A more complete representation of predictive
strength is given in terms of conditional distributions.
Figure 4 shows the conditional distribution of the pre-
dictors for low ceiling and high ceiling, separately.5 It
can be seen, for example, that x1 (sea level pressure)
is a poor predictor, while x4 (u component wind at 10
m) is a relatively good predictor. Note that a binary
variable such as x15 (precipitation occurrence) appears
as a continuous quantity, because of the jitter intro-
duced in the data (see section 3). Such plots provide a
more meaningful assessment of the predictive strength
of the predictors, but they are still univariate in nature

and, so, are not utilized in determining the inputs to
the NN.

5. Results

To compare the NNs with MOS, the HSS scores for
MOS are computed first. Figure 5 shows the HSS scores
for 1200 UTC, 12-h MOS forecasts. The HSS is com-
puted from 4 � 4 contingency tables, that is, for the
classes adopted here (Table 1). Each station has two
bars: one for the training set and one for the validation
set. The error bars on each bar are computed from
bootstrapping. The left panel is for ceiling and the right
panel is for visibility. Note that MOS performs differ-
ently for ceiling and visibility. For example, the best
ceiling forecasts occur at KEAT and KRDD, while the
best visibility forecasts take place at KPDT and
KRDM. Moreover, the uncertainty in the HSS values
(i.e., error bars) is not consistent across stations. For

5 It is possible to plot the conditional distributions for all four
classes of ceiling, but the results are visually unappealing.

FIG. 6. The TV diagrams, with cross-entropy as the performance
measure, for three stations with different levels of nonlinearity in
the data: (top) extreme, (middle) midrange, and (bottom) no non-
linearity.
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example, for ceiling, whereas stations like KBKE,
KCEC, and KYKM are consistently in the high-HSS
range, KEKO and KRDD display a large variability in
performance.

As mentioned previously, the optimal number of hid-
den nodes is determined via bootstrapping. The data
from different stations have different amounts of non-
linearity, leading to different number of hidden nodes.
The TV diagrams, with cross-entropy as the perfor-
mance measure, for three stations and three bootstrap
trials are shown in Fig. 6. KACV, for example, has
lower training and validation errors for more hidden
nodes. This suggests a highly nonlinear relationship be-
tween the predictors and the predictand (here, ceil-
ing).6 KEUG, however, shows a strong preference for
an NN with six hidden nodes; larger NNs lead to lower
training but higher validation errors for each of three

bootstrap trials. By contrast, any amount of nonlinear-
ity introduced into the NN for KMSO causes overfit-
ting.7

The discrimination diagram for the NN and logistic
regression are shown in Fig. 7. These figures are for
KNUW; the forecasts are 12-h forecasts of ceiling for
1200 UTC, and the NN has six hidden nodes (the op-
timal for that station). It can be seen that the NN makes
more discriminatory forecasts; that is, the conditional
distribution of the forecasts is concentrated around
small values for cases with high ceiling, and the distri-
bution for low ceiling is concentrated around high val-
ues (�0.9). By contrast, logistic regression has broader
distributions for low and high ceilings, leading to a
greater overlap between the two.

The attributes diagram for the NN and logistic re-
gression are shown in Fig. 8. The station and the NN are
the same as those described for Fig. 7. Both the NN and
logistic regression produce highly reliable forecasts, as

6 As a final step, in order to avoid overfitting, the largest al-
lowed number of hidden nodes is eight.

7 An NN with zero hidden nodes is equivalent to logistic re-
gression; for clarity, the performance measures for logistic regres-
sion are shown in later figures.

FIG. 7. Discrimination diagrams for (top) NN and (bottom)
logistic regression forecasts for KNUW. The forecasts are for
1200 UTC ceiling, and the (optimal) number of hidden nodes is
six.

FIG. 8. Attributes diagrams for (top) NN and (bottom) logistic
regression forecasts for KNUW. The forecasts are for 1200 UTC
ceiling, and the (optimal) number of hidden nodes is six.
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evident from the overlap of the reliability curve and the
diagonal line. One difference is that whereas the NN
produces reliable forecasts (at least within the error
bars) even when the probability of low ceiling is in the
0.9 range, logistic regression produces no forecasts in
that range at all. Moreover, a comparison of the error
bars between the two figures suggests that the NN’s
forecasts are more certain than those of logistic regres-
sion.

The bell-shaped curve in Fig. 7 is often called the
refinement diagram and is simply the distribution of the
forecasts without regard to low or high ceilings. Its
skewed nature is simply a reflection of the rare nature
of low-ceiling conditions.

Figure 9 shows the ROC curves for the NN and lo-
gistic regression. Here, the training and validation
curves are plotted separately. The most concave curves
correspond to three different training sets (i.e., seeds),
and the intermediate curves are the associated valida-
tion sets. The least concave curves are for logistic re-
gression; the training and validation curves are not as
distinguishable as the NN curves. Again, it is evident
that the NN outperforms logistic regression.

To compare NNs, logistic regression, and MOS, si-
multaneously, ceiling and visibility must be binary, be-
cause logistic regression models only two-class pre-
dictands. Furthermore, because MOS does not produce
probabilistic forecasts, a categorical verification mea-
sure, such as HSS, must be employed. The TV diagrams
showing HSS for three stations are shown in Fig. 10.
The results from the bootstrap trials are displayed sepa-

rately in order to convey some sense of sampling varia-
tion. The top panel in Fig. 10 illustrates that for three
bootstrap trials, the NN outperforms logistic regression,
which in turn outperforms MOS. This conclusion fol-
lows because the training and validation HSS values for
the three NNs (regardless of the number of hidden
nodes) are all superior to those of logistic regression;
moreover, more hidden nodes lead to better perfor-
mance on the training and validation sets. The middle
panel in Fig. 10 illustrates a situation where MOS and
logistic regression are comparable in their perfor-
mance, but the NNs still outperform both. An ambigu-
ous situation that does arise is exemplified in the bot-
tom panel of Fig. 10. Here, MOS displays validation
HSS values that are superior to both logistic regression
and NN, in spite of the latter’s wide spread in the train-
ing HSS values. As such, it is not possible to assess the
relative performance of the three models.

FIG. 9. ROC curves for NN and logistic regression, separately
for training and validation data, and for three different seeds (see
text).

FIG. 10. The TV diagrams displaying HSS values of NNs with
two, four, six, and eight hidden nodes, logistic regression (L), and
MOS (M), for three bootstrap trials (labeled 1, 2, and 3). The
underlying forecasts are two class.
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Analogous figures for all 30 stations have been pro-
duced, but are not shown here.8 To distill that informa-
tion, a coarse categorization of the results is in order.
Given that logistic regression is an NN with zero hidden
nodes, an analysis of such figures for all 39 stations
allows for a coarse comparison of NN with MOS. La-
beling the above-mentioned three situations as “signifi-
cantly,” “moderately,” and “questionably,” Table 4 lists
the stations falling in each category. These categories
are based on a visual inspection of the figures, and
assess the relative separation between the performance
values for the three models, but also with reference to
the amount of spread among the three bootstrap
trials.

HSS allows a comparison of the various models when
ceiling and visibility are not binary. The results for the
above-mentioned three stations are shown in Fig. 11,
but an analysis of the figures for all 39 stations suggests
that the difference in performance between the NN and
MOS is generally smaller than in the binary case. Nev-
ertheless, the NN does generally outperform MOS for
many of the stations. For some stations, however, MOS
outperforms NN. For instance, binary MOS forecasts of
0600 UTC ceiling for KEUG are superior to the NN
forecasts. All of these comparisons are shown in Table
5. The letter N implies that the NN outperforms MOS,

and the letter O implies the opposite. Meanwhile, there
are many situations where it is not at all clear which
forecasts are best, and these are labeled with a dash; the
cases where the comparison is ambiguous are generally
when the amount of data is exceedingly small, and the
occurrence of low ceiling and visibility is exceedingly
rare.

6. Conclusions and discussion

MM5 model output and surface observations at 39
TAF stations are utilized to develop NNs for predicting
ceiling and visibility with 6- and 12-h lead times. A
number of verification measures are employed to com-
pare the performance of these NNs with logistic regres-
sion and with traditional MOS. It is shown that for
stations for which sufficient data exist for developing an
NN, the NN outperforms logistic regression and MOS,
with the degree of improvement depending on a num-
ber of factors, including lead time and the choice of the

8 All the figures can be found in the appendix of http://
www.stat.washington.edu/www/research/reports/2005/tr490.pdf.

FIG. 11. Same as in Fig. 10 but for a ceiling having four classes.

TABLE 4. A coarse classification of the stations according to
how significantly the NN outperforms MOS. The forecasts are
12-h forecasts for 1200 UTC, and ceiling is binary (i.e., takes two
classes).

Significantly Moderately Questionably

KACV KALW KBNO
KAST KBKE KBOI
KBFI KCEC KEKO
KBLI KCOE KEUG
KCLM KGEG KMSO
KDLS KMWH KRDM
KEAT KOLM KSUN
KHQM KPDT KTCM
KLMT KPDX KWMC
KMFR KPSC
KNUW KSKA
KPAE KSLE
KRDD
KSEA
KSFF
KTTD
KTWF
KYKM
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station itself. This suggests that the NNs should be em-
ployed in real time, especially because they are devel-
oped to produce highly reliable and discriminatory
probabilistic forecasts (in contrast to MOS’s categorical
forecasts).

The comparison of statistical models is contingent on
the data at hand, and therefore, the above conclusions
are valid only for the data employed herein. In fact, the
manner in which the NNs are developed is apt to render
their performance positively biased. Specifically, al-
though a number of steps are taken to avoid overfitting,
it is still possible that some degree of overfitting has

occurred. This is mostly because the training and vali-
dation bootstrap data are not entirely independent of
one another; although seasonal effects are removed,
some autocorrelation is apt to remain, thereby render-
ing a given training set and validation set dependent.
This may appear to unfairly favor NN over MOS; how-
ever, it must be pointed out that the regression models
underlying the MOS forecasts employed here are likely
developed on the same data used for comparing MOS
with NN. In other words, the MOS forecasts are also
positively biased. A better comparison of MOS and NN
would involve truly independent data; these data are

TABLE 5. A coarse comparison of NN (marked with an N) and MOS (marked with an O) at all stations, for forecasts of ceiling and
visibility at 0600 and 1200 UTC.

Ceiling Visibility

1200 UTC 0600 UTC 1200 UTC 0600 UTC

Two class Four class Two class Four class Two class Three class Two class Three class

KACV N N — N N N — —
KALW N N — — — — — —
KAST N N N N N N N —
KBFI N N — N N N N —
KBKE N — — — N N — —
KBLI N N N N N N — —
KBNO — — — — — — — —
KBOI N N — — — — — —
KCEC N N O — N — — —
KCLM N N — — N N — —
KCOE N — — — N N N —
KDLS N — — — N — — —
KEAT N — N — N — — —
KEKO N N N — N N N —
KEUG — N O — — — — —
KGEG N — — O N — — —
KHQM N N N N N N N —
KLMT N N — — N N — —
KMFR N N — N — — — —
KMSO N N — N N — — —
KMWH N N — — N N — —
KNUW N N — — N N N N
KOLM N N — — N — — —
KPAE N N — — N N — —
KPDT N N — — N — — —
KPDX N N O — N N — —
KPSC N N — — N N — —
KRDD N N — — N N — —
KRDM — N — — — — — —
KSEA N N N — N N — —
KSFF N N N — N N N —
KSKA N — — O — — — O
KSLE N N O — N N — —
KSUN — N N — N N N N
KTCM N N O — N — — —
KTTD N N — — N N — —
KTWF N N — — N N — —
KWMC — — — — N — N —
KYKM N N N — N — — —
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being currently archived, and the comparison will be
reported upon at a later time.

Changes to the MM5 can be accommodated in sev-
eral ways: 1) by running an older postprocessor on new
model output, 2) by developing a new postprocessor
developed from only new data produced from new runs
of the new model, and 3) on new runs of the new model
on archived data. A priori it is not clear which approach
would produce better forecasts. These options will be
tested in the future.

Other future work involves developing separate
models for warm and cool seasons, more sophisticated
preprocessing (e.g., removal of autocorrelations), and
variable selection. An attempt to employ principal
components of the data as inputs to the NNs yielded no
noticeable improvement.

A more promising direction is the development of
NNs that utilize the relationship between ceiling and
visibility to improve the forecasts. All of the NNs de-
scribed here were designed to predict either ceiling or
visibility. There is, however, some evidence that an NN
that predicts multiple predictands (e.g., ceiling and vis-
ibility) simultaneously may outperform separate NNs
designed to predict each predictand, separately. The
advantage of the former is most evident when the pre-
dictands are correlated. A typical conditional (on ceil-
ing) probability distribution between ceiling and visibil-
ity is shown in Table 6. The structure of this table im-
plies that when the ceiling is high, the visibility is high
as well. By contrast, a low ceiling does not imply low
visibility. The complex nature of the association be-
tween ceiling and visibility is ideal for developing an
NN that predicts both ceiling and visibility, simulta-
neously. This idea will be examined in the future.
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TABLE 6. A typical conditional (on ceiling) probability
distribution between ceiling and visibility.

Visibility (%)

Ceiling 35 32 33 100
5 18 77 100
1 7 92 100
0.04 0.33 99.63 100
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