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ABSTRACT

A statistical method referred to as cluster analysis is employed to identify features in forecast and
observation fields. These features qualify as natural candidates for events or objects in terms of which
verification can be performed. The methodology is introduced and illustrated on synthetic and real quan-
titative precipitation data. First, it is shown that the method correctly identifies clusters that are in agree-
ment with what most experts might interpret as features or objects in the field. Then, it is shown that the
verification of the forecasts can be performed within an event-based framework, with the events identified
as the clusters. The number of clusters in a field is interpreted as a measure of scale, and the final “product”
of the methodology is an “error surface” representing the error in the forecasts as a function of the number
of clusters in the forecast and observation fields. This allows for the examination of forecast error as a
function of scale.

1. Introduction

Given the rapid advances of numerical weather pre-
diction (NWP) systems, it is imperative to devise a
framework within which the performance of these sys-
tems can be assessed objectively and possibly without
human intervention. Most NWP systems produce out-
puts (forecasts) that are spatial fields, with quantities of
interest taking values at every grid point. These fields,
in turn, have features that most experts (though not all)
might identify as events or objects, within which the
grid values are highly correlated. As such, it is difficult
to interpret verification results based on a simple com-
parison of the forecasts and observations on a grid-by-
grid basis without accounting for the existence of these
features. Such features are not only peculiar to the fore-
cast fields produced by NWP, but also to the observa-
tion fields. It is then natural to perform the verification
of the NWP forecasts within a framework that acknowl-

edges the existence of such features in the two fields.1

To that end, event-based or object-oriented verification
techniques have been put forth (Ebert and McBride
2000; Du and Mullen 2000) for precipitation verifica-
tion, and central pressure tracking techniques are com-
mon for tropical cyclone and midlatitude cyclone pre-
diction verification. Numerous extensions and generali-
zations have been developed by Baldwin et al. (2001,
2002), Brown et al. (2002), Bullock et al. (2004), and
Chapman et al. (2004). Alternative approaches aimed
at addressing such scale-related issues in verification
have also been proposed by Nachamkin (2004) and Ca-
sati et al. (2004).

In this paper, a similar approach is developed; it is
based on a statistical method generally referred to as
cluster analysis. In image processing circles, cluster
analysis is referred to as image segmentation, and it has
been employed for storm and cloud identification (Lak-
shmanan et al. 2003; Peak and Tag 1994). The primary
aim of cluster analysis is the identification of clusters
whose members are in some sense more similar to one
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1 Hereafter, any reference to “the two fields” or “both fields”
refers to the observation and forecast fields.
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another than to members of other clusters. If the data
consist of only spatial coordinates, say x and y, then
cluster analysis can produce a scatterplot of the data
where dissimilar regions are identified (e.g., by differ-
ent colors). These dissimilar regions can be identified as
objects or events in the aforementioned sense. How-
ever, cluster analysis is not restricted to two spatial co-
ordinates; it can be performed on any number of vari-
ables. The output of the analysis in higher dimensions is
not as visually appealing as in two dimensions, but the
primary aim of the analysis is still the same: the iden-
tification of clusters that have similar features, with a
feature quantified by all the variables.

Given the interpretation of a cluster in cluster analy-
sis as an event or object in a gridded field, it is natural
to perform the analysis on a forecast and a verifying
observation field. Having identified objects in both
fields, it is further natural to compare the two fields in
terms of the clusters found within them. This is the
main theme of the current paper: the verification of
forecast precipitation fields in terms of objects identi-
fied in forecast and observed precipitation fields, where
the objects are defined objectively via cluster analysis.2

As in any statistical tool, whether cluster analysis
produces physically meaningful results is a matter that
depends on the choice of several parameters that are
not universally determined. In other words, different
variants of cluster analysis produce different results,
some of which may be entirely meaningless. Here, it is
shown that one of the common variants of cluster
analysis does produce clusters that, although not per-
fectly sensible, do generally agree with the human vi-
sual interpretation of a meteorological event.

Having motivated for the use of cluster analysis
for object identification, several additional criteria
are introduced in order to allow for verification, that
is, an objective comparison of the two fields. Although
these criteria produce further ambiguity in the out-
come of the analysis, it is shown that even simplistic
criteria allow for reasonably meaningful verification re-
sults.

In most applications of cluster analysis an important
quantity is the number of clusters in the field. In one
type of cluster analysis that quantity is prespecified
(e.g., k-means cluster analysis), while in another type it
is inferred according to some criterion (e.g., Bayes’s
information criterion; see the next section.) Here, how-
ever, it is neither prespecified nor inferred. Instead, it is
treated as a variable that allows one to explore a field

on different scales. In fact, even the comparison of two
fields (i.e., verification) is performed in a framework
where the number of clusters in both fields is treated as
variable. As such, the final outcome of the verification
is not a single value for error, but an array of error
values for different numbers of clusters in the two
fields. It is suggested that this array of numbers be
viewed as an “error surface” in a three-dimensional
space whose x and y coordinates are the number of
clusters in the observation and forecast field, NCo, and
NCf, respectively. The “height” of the surface at a given
point expresses the error of the forecasts at the corre-
sponding scale.

The structure of the paper is as follows. In the next
section cluster analysis is reviewed, followed by a sec-
tion that discusses the proposed methodology in further
detail. After discussing the data, the paper proceeds to
provide illustrations of the application of cluster analy-
sis, followed by a demonstration of the proposed veri-
fication methodology. The paper concludes with a sum-
mary of the conclusions and a discussion of further de-
tails and of future directions for research. An appendix
provides further details of cluster analysis.

2. Cluster analysis: Review

Cluster analysis refers to a large class of techniques
designed to classify a multivariate dataset into some
number of clusters whose members are more similar to
one another than to members of other clusters. These
techniques are divided into many classes based on dif-
ferent notions of similarity, different emphasis placed
on merging versus splitting clusters, and so on. Here,
only one subclass of these techniques is discussed; the
class is sufficiently large to allow for a demonstration of
the abilities and restrictions of cluster analysis. Details
can be found in Everitt (1980). The specific subclass
examined here is called agglomerative hierarchical clus-
ter analysis, hereafter referred to as CA.

The algorithm begins by assigning every data point to
a cluster (of size 1). The distance between every pair of
clusters is computed, and the two closest clusters are
merged into a single cluster. The procedure is then re-
peated with the new set of clusters. The number of
clusters, therefore, begins with N the sample size, and is
systematically reduced to 1, that is, the entire dataset.
Each step is referred to as an iteration. This iterative
approach is desirable for verification of gridded data,
because it explores the fields at different scales, but still
within an object-oriented framework. At one extreme,
it addresses individual grid points (i.e., at the first itera-
tion), and it ends with the entire field treated as a single
event.

2 It is also suggested that performing cluster analysis on the joint
set of the two fields can provide an objective method for estimat-
ing false alarms and misses. See section 7.
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The choice of the measure of intercluster distance
(a.k.a. cluster similarity) gives rise to different varia-
tions of CA. One common measure is the group aver-
age distance, which is computed as the average of the
distances between every pair of data in two clusters. In
the so-called SLINK (for shortest link) version of CA,
the intercluster distance is taken to be the shortest dis-
tance between the elements of the clusters. Adopting
the largest distance between the elements to gauge in-
tercluster distance gives rise to the CLINK (for com-
plete link) variant. These three distance measures yield
clusters with different characteristics (Everitt 1980).
For example, CLINK results in tightly packed, small
clusters.

The choice of the distance measure is further multi-
plied by the ambiguity in how the distance between
members of clusters is computed. For example, one
may compute distances in a Euclidean sense (i.e., with
L2 norm), or as a city-block distance (i.e., L1 norm). In
short, one has at least six measures of intercluster dis-
tance:

group average distance �
1

n1n2
�

i

n1

�
j

n2

Di,j,

SLINK distance � min�Dij�,
CLINK distance � max�Dij�, �1�

where Di,j stands for the distance between the ith ele-
ment of the first cluster (size n1) and the jth element of
the second cluster (size n2), and it can be computed
with an L2 or L1 norm,

��
i

D

�xi � yi�
2, �

i

D

|xi � yi|, �2�

respectively, where x and y are D-dimensional vectors
representing the coordinates of the two members. The
characteristics of these distances are illustrated in sec-
tion 5, below, and a few additional features are ad-
dressed in the appendix.3

The number of clusters in CA is not specified a
priori. An alternative technique, not considered here,
where the number of clusters is fixed, is called k-means
clustering. There exist a number of methods for infer-
ring the optimal number of clusters from the data itself.
A simple, visual method relies on dendrograms (Everitt
1980). These diagrams often reveal a natural number of
clusters underlying the data. There exist more quanti-

tative criteria for inferring the optimal number of clus-
ters, based on Bayes’s or Akaike’s information criteria
(BIC and AIC, respectively). Here, however, the ulti-
mate task is to perform verification at different scales,
and so the “optimal” number of clusters in the two
fields is not of concern.

Another reason for treating the number of clusters in
the two fields as an issue that should be addressed
jointly (involving both fields) is that observations occa-
sionally suffer from errors, as well. In other words, an
observation field is occasionally no more accurate than
a forecast field. In this sense, it is natural to treat them
on the same footing.

3. Verification method

The verification procedure can be performed either
in the two-dimensional space spanned by the spatial
coordinates only, or in the three-dimensional space that
also includes the precipitation amount. In what follows,
these two cases will be referred to as x–y, and x–y–p,
respectively. (See section 7 on the possibility of adding
other variables to the analysis.) Performing the verifi-
cation in x–y space assesses the agreement between the
two fields in terms of the size, shape, and displacement
errors, while the distances in x–y–p space assess the sum
of all four errors: size, shape, displacement, and pre-
cipitation amount.

To assure that the variables (x, y, and/or p) are
treated on the same footing, they are normalized to
vary over the same range. This is done by converting
each variable to a z score by subtracting from each
variable its mean and dividing by its standard deviation.
This gives all variables a mean of 0 and a standard
deviation of 1. The normalization is performed over the
joint set of observation and forecasts. Moreover, be-
cause of the highly skewed distribution of precipitation,
the natural log of precipitation is employed instead. At
the end of the procedure, all variables are transformed
back to their original units. There are situations where
one does not desire for the various variables to be
treated on the same footing; for example, when precipi-
tation amount is more important than the placement of
some cluster. That issue is addressed in section 7.

At every iteration of CA performed on both fields, a
criterion is required for matching together the NCo ob-
served clusters and the NCf forecast clusters. A simple
approach is to compute the intercluster distance between
all NCo � NCf pair of clusters, and to identify the
smallest element in that set; the corresponding clusters
are defined as “matched” and then excluded from the
set of NCo � NCf elements. This is a reasonable ap-
proach, except that it leads to all NCo observed clusters

3 The distance between the centroids of the clusters would be an
alternative measure. However, it is not employed in the current
work because it is not well suited to elongated or irregularly
shaped objects.
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being matched with all NCf forecast clusters; Any false
alarms or misses will be a direct consequence of NC0 �
NCf . In other words, the equality of NCo and NCf

precludes false alarms or misses, even if the clusters are
not “adequately” matched. Although, the difference
between NCo and NCf can be thought of as a per-
formance measure in itself, it is unreasonable to assume
that a forecasting model that produces the same num-
ber of forecast clusters as that of the observation field
will also adequately place them.

This raises the question of what is adequate place-
ment? A related question is the following: When an
expert views a single pair of forecast and observation
fields, what feature of the two fields is most important
in aiding identification of anomalously placed clusters?
The term “anomalous” suggests the answer: outliers. In
other words, the expert’s mind analyzes the two fields
and creates an estimate of the typical, or average, dis-
placement between forecast and observed clusters. It
then identifies any cluster in one field whose distance to
other clusters in the second field is uncharacteristically
large, and labels it as a false alarm or a miss.

To simulate this behavior, the above cluster-
matching criterion is revised. At every iteration of CA
performed on both fields, NCo � NCf distances are
computed, and the minimum distance is identified. A
list of the minimum distances is recorded for all itera-
tions, and a histogram is computed.4 It is found (not
shown) that the histograms are generally bell shaped,
though skewed to the left. As such, one can argue that
any distance that resides in the upper tail of the histo-
gram can be considered an outlier. Here, matched clus-
ters whose distances fall outside of the (median � z	)
of the histogram are defined as “unmatched.”5 An un-
matched cluster in the forecast field is then counted as
a false alarm, and an unmatched observed cluster is
counted as a miss. These two scalar quantities are two
of the verification measures reported here. An alterna-
tive, more objective, technique for identifying false
alarms and misses is put forth in section 7.

Another measure of the agreement between the two
fields is naturally provided by the average of the dis-
tances between matched clusters. Of course, the mea-
sure of these distances is subject to ambiguity, for it can

be computed in any of the six ways defined in Eqs. (1)
and (2). Note that, although the distance measures in
Eqs. (1) and (2) arise for measuring the distance be-
tween clusters within a given field, they can also be
utilized for measuring the distance between clusters in
different fields. Here, no attempt is made to promote
one measure over another, because ultimately the
choice of the measure is problem dependent. As shown
below, for the problem at hand, the group average dis-
tance with an L2 norm appears to be adequate for both
the CA and the verification tasks.

Therefore, at every iteration of CA (i.e., at every
scale) several measures can be computed to assess the
quality of the agreement between the observed and
forecast fields: 1) |NCo � NCf|, 2) number of false
alarms, 3) number of misses, and 4) the average dis-
tance between the matched clusters. Although, all four
measures are reported here, the last measure is treated
more heavily as an overall measure of forecast error. Of
course, one may combine the four measures into a
single measure; however, that requires an assessment of
the relative importance of the four measures—a task
that is again problem dependent.

One may be concerned that ignoring some of these
facets of performance can lead to an overproduction of
false alarms or misses, but as is shown below, this is not
a serious concern. Specifically, if the intercluster dis-
tance measure is the group average distance [Eq. (1)],
with the point-to-point distances computed as a Euclid-
ean (L2) distance [Eq. (2)], then that distance measure
has the unusual property that it increases with decreas-
ing cluster size. As such, false alarms or misses are dis-
couraged. The appendix presents further details. Nev-
ertheless a consequence of neglecting the contribution
of false alarms and misses to the total error is that the
skill of the forecasts as assessed in this approach should
be considered a measure of potential skill.6 The issue of
assigning error to false alarms and misses has also been
addressed by Marshall et al. (2004), although in a some-
what different context.

Another concern may arise in addressing the match-
ing of multiple clusters in one field to a single cluster in
the other field. Here, it is unnecessary to consider an
explicit match of multiple forecast clusters to a single
observed cluster, or vice versa, because it is implicitly
incorporated into the iterative nature of CA. In other
words, if it turns out that multiple forecast clusters
should be matched with a single observed cluster (in the
sense of producing better agreement between the two

4 This is not a histogram of all NCo � NCf distances, but a
histogram only of the minimum distances. As such, the procedure
is somewhat slow, because it requires computing the distances
twice, but it is necessary because it is the distribution of the mini-
mum distances that sets the scale for what can be considered
anomalous placement.

5 The median is utilized, because it is closer to the mode of the
distribution. The value of z is set to 1; see section 7 for the effect
of varying z.

6 The term “potential skill” is employed in a sense similar to
that of Murphy (1995), where a skill score is said to measure
potential skill if it ignores some facet of performance such as bias.
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fields), then the distance/error between the fields will
be lower at some iteration where the multiple forecast
clusters are considered a single cluster.

4. Data

Three datasets are utilized. The first consists of 3-h
precipitation forecasts from the University of Washing-
ton Mesoscale Ensemble with the fifth-generation
Pennsylvania State University–National Center for At-
mospheric Research Mesoscale Model (MM5) on a 12-
km grid (Grimit and Mass 2002).7 Precipitation fore-
casts for 9 September 2003 over the Pacific Northwest
(centered on Seattle, Washington) are employed to il-
lustrate CA and the effect of distance measures on the
clusters. No verification is performed on this dataset.

The second dataset is synthetic in both observations
and forecasts. It is employed for illustrating the cluster-
ing and verification procedure. It consists of five unam-
biguously distinct events in the observation field (Fig.
3a), and five events in the forecast field (Fig. 3b); both
fields are on a 100 � 100 grid. Apart from an un-
matched forecast event (false alarm) and an unmatched
observed event (miss), the remaining events differ from
the observed ones in size, the amount of spatial dis-
placement, and precipitation intensity. Their shape is
the same, namely a circular disc.

The forecasts for the third and final dataset are col-
lected from The Naval Research Laboratory Coupled
Ocean–Atmospheric Mesoscale Prediction System
(COAMPS; Hodur 1997), and the verifying observa-
tions are derived from River Forecast Center (RFC)
24-h precipitation reports, interpolated from their origi-
nal 4-km grid to the COAMPS 27-km grid. These data
are employed to illustrate CA and the verification pro-
cedure on realistic data.

The COAMPS forecast fields are given in terms of
three types of precipitation: 1) total accumulated re-
solved liquid, 2) total accumulated snow, and 3) total
accumulated convective precipitation. In this study,
only the latter is compared with the observations. The
specific forecasts are for 25 July 2003, over the conti-
nental United States. The comparison is made between
observations at 1200 UTC of the precipitation accumu-
lated over the previous 24 h, and the forecasts initial-
ized at 1200 UTC on the previous day.

5. Cluster analysis illustration

In this section CA is performed on MM5 data. The
main purpose of this exercise is to demonstrate the ef-

fect of different distance measures on the type of clus-
ters that emerge from CA. Figure 1 displays a contour
plot of the MM5 data.

Figure 2 displays the results of clustering performed
in x–y–p space, at iterations corresponding to 10 (top)
and 5 (bottom) clusters. Quite generally, it can be
shown that for the specific type of cluster analysis
adopted here embedded clusters are not possible in x–y
space. But, as can be seen in these figures, such clusters
do emerge in x–y–p space, and they generally represent
regions of heavy precipitation in Fig. 1. The rows in Fig.
2 correspond to the three distance measures in Eq. (1),
and the columns refer to the two norms given in Eq. (2).
For this particular dataset, it is evident that the L2 norm
generally produces smaller clusters than the L1 norm.
Similarly, the group average distance and CLINK gen-
erate smaller and tighter clusters than SLINK.

The MM5 precipitation data are centered on the NE
Pacific and indicate a major low pressure system in the
NW corner, a pair of rainbands associated with a frontal
system in the SW quadrant, and another low system to
the NE. A key aspect of these synoptic rain patterns is
the very intense embedded precipitation regions. It is a
difficult verification issue to decide whether these areas
of intense precipitation should be treated separately
from the surrounding lighter-precipitation regions.
From many perspectives, these intense rainfall areas
are significantly more critical than the overall region of
rainfall. The method of CA chosen—group average,
SLINK, CLINK, and so on—allows these regions to be
highlighted (group average, CLINK) or suppressed
(SLINK). SLINK and the lower number of clusters
(five) clearly reproduce the synoptic aspects of the pre-
cipitation without unduly singling out intense precipi-

7 The operational initialization employed here is based on the
Aviation Model.

FIG. 1. Contour plot and x–y coordinates of precipitation
forecasts from MM5.
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tation. Verification of the intense precipitation regions
could also be accomplished by successive thresholding;
however, CA in x–y–p space may prove more useful.

An important point is the appearance of apparently
nonsensible clusters when the analysis is performed in
x–y–p space. For example, one notes spatially distant
entities appearing as a single cluster (i.e., with the same

color). This simply implies that the agreement between
the amount of precipitation in the two clusters is to such
a high degree so as to justify the merging of the two into
a single cluster in spite of the spatial distance between
them. Conversely, spatially close clusters may emerge
as being distinct clusters. The implication of this occur-
rence would be that the clusters are dissimilar in terms

FIG. 2. The CA results for the six different distance measures [Eqs. (1) and (2)] on MM5
data.
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of their precipitation amount. In short, apparently non-
sensible clusters may in fact be perfectly sensible when
viewed in the larger x–y–p space. As such, x–y–p clus-
tering results may appear as misleading. The virtue of
CA in x–y–p space is, therefore, not in producing visu-
ally appealing clusters, but rather in providing a more
realistic and more accurate assessment of the quality of
the forecasts.

The occurrence of small dots (i.e., a one-member
clusters) scattered throughout some of the graphs is
disconcerting. It is clear, however, that the extent of this
problem depends on the choice of the distance and
norm. It is likely that the inclusion of other variables in
CA will further alleviate this problem.

In summary, it would appear that CA does a reason-
able job of identifying physically meaningful clusters if
the distance measure is suitably selected. It would ap-
pear that the group average distance and the CLINK
distance (i.e., the longest distance) with either an L2 or
L1 norm provide comparable clusters. Although group
average distance with an L2 norm is adopted for pre-
sentation in the remainder of the analysis, the other
measures have been examined, and confirmed to pro-
duce similar results.

6. Verification

The methodology will be tested on a synthetic
dataset with known characteristics (number of clusters,
size, location, and amount of precipitation). After the
procedure has been tested (next section), it will be ap-
plied to realistic data.

a. Verification of synthetic data

This dataset is described in section 4 and is shown in
Figs. 3a and 3b. The results of CA at each iteration are
not shown. Instead, Table 1 shows the distances be-
tween the observed and forecast fields at iterations
three through seven, that is, with three through seven
clusters in each field. These distances are measured as
a group average distance with an L2 norm in x–y–p
space.

This table is a representation of the error surface
mentioned in the introduction. The x and y coordinates
of the three-dimensional space (in which the surface is
embedded) are the rows and columns of the table, and
the height of the surface (i.e., error at that scale) cor-
responds to the elements of the table.

Evidently, the error surface has a parabolic shape, in
that there is a single absolute minimum at (5, 5). It is
worth emphasizing that although the error between the
fields is minimum when there are five clusters in the

observed field and five in the forecast field—precisely
the true numbers—it is the table as a whole that rep-
resents the error of the forecasts. The emergence of the
point (5, 5) as a clear minimum is a consequence of the
explicit scale injected into the structure of the two fields
(Fig. 3). At this scale, the cluster-matching procedure
identifies cluster A in the forecast field with cluster A in
the observed field and, similarly, with clusters B, C, and
D. For the E clusters, see below.

The existence of a natural scale (i.e., five clusters in
each field) allows one to examine the individual errors
between the clusters at that scale. These are shown in
Table 2. When the clustering is done in x–y space, the
results indicate that the A and B clusters are in fact the
best forecast clusters, while the C cluster represents the
worse forecast.

By contrast, in the x–y–p case the best forecast is the
C cluster, and the worst is the A cluster. The reversal of
the A cluster from the best forecast in the x–y analysis

FIG. 3. Synthetic (a) observed and (b) forecast fields. The num-
bers indicate the amount of precipitation at each grid point in
each cluster. The letters label the clusters.

TABLE 1. The distance between observation and forecast fields
for different NC in each. The boldface entry is the smallest dis-
tance (error), corresponding to five clusters in the observed field
and five clusters in the forecast field—precisely the true values.
The analysis is done in x–y–p space.

NCo

NCf

3 4 5 6 7

3 1.23 0.89 0.89 0.89 0.89
4 1.07 0.74 0.74 0.98 0.98
5 0.83 0.68 0.55 0.78 0.78
6 0.83 0.68 0.99 1.11 1.02
7 0.83 0.68 0.98 1.11 1.25
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to the worst forecast in the x–y–p analysis suggests that
the forecasting model has misestimated the size and/or
amount of precipitation in the A cluster, even though
the placement is correct.

As mentioned in section 3 the error values in Table 1
are computed only from matched clusters, and the un-
matched ones (false alarms or misses) are identified as
outliers in the distribution of all distances in the field.
This criterion correctly identifies the E clusters as a
false alarm and a miss, respectively.

b. Verification of real data

In this section CA-based verification is applied to
COAMPS and RFC data (see section 4). Figure 4 dis-
plays the observation field (top) and the forecast field
(bottom), for precipitation �5 mm.8

The x–y analysis is presented first. The complexity of
the two fields precludes a representation of the error
surface as a table (as in Table 1). For presentation pur-
poses, the surface is plotted as a contour plot in Fig. 5a.
Several dominant features appear, some of which are
easily explained; other features are more enigmatic,
calling for more research. For example, it can be seen
that the forecast errors are generally high (red through
yellow) when the number of clusters in either field is
small. This feature is likely to be a universal feature of
the error surface, because it simply reflects the fact that
the distance/error between two fields is relatively large
when there are a few large clusters in one field and a
large number of smaller clusters in the other field.

The errors are lowest when the number of clusters in
either field (but not both) is large. This, too, is a con-
sequence of the methodology; specifically, because
false alarms and misses are not allowed to contribute to
the overall error. As a result, the procedure rewards the
production of large numbers of false alarms and misses.
As mentioned previously, it may seem inappropriate to
not penalize the procedure for producing false alarms

and misses, but this is a necessary simplification at the
current developmental stage of the methodology. It
does not, however, preclude utilizing the error surface
for assessing forecast errors; for instance, in comparing
the forecasts from two different forecast systems, it is
the relative heights of the two error surfaces that con-
tain the relevant information.

Another feature of this error surface is the ridge
along the diagonal. This occurs because “forcing” an
equal number of clusters in the two fields leads to large
errors, especially when the “true” numbers are un-
equal. As such, the existence of the ridge is a conse-
quence of different cluster numbers in the two fields.
Better forecasts imply a smaller ridge. Note that the
ridge does not extend all across the diagonal; its
strength decreases for larger cluster numbers. The ex-
tent of its reach is further addressed in section 7.

Note the mostly symmetric structure about the di-
agonal. This symmetry implies that the forecasts and
observations are more agreeable when they are verified
on the same scale. This in itself can be viewed as a
measure of (good) performance, for if the symmetry
were absent, then one could conclude that the forecasts
generally have the wrong scale. Indeed, the error sur-
face in Fig. 5a is not entirely symmetric along the di-
agonal. The error surface falls to lower values (dark
blue) when the number of clusters in the forecast field
is generally larger than that in the observed field. This
finding is consistent with the fields shown in Fig. 4;
there appears to be more clusters in the forecast field
than in the observed field.

In the x–y–p case, the contour plot of the error sur-
face is shown in Fig. 5b. Although many of the features
are similar to that of the x–y analysis in Fig. 5a, there is
an additional asymmetry of the ridge (green), which
suggests that when precipitation amount is included in
the analysis, then the forecasts tend to agree with the
observations even when the number of clusters in the
forecasts is larger than that in the observations. Said
differently, Fig. 5b shows that in x–y–p, the forecast
model does not faithfully reproduce the more intense
precipitation over Florida and in the Northeast (Fig. 4);
hence, the overall “score” is worse, and there is a ten-
dency for more false alarms and misses based on pre-
cipitation amount. However, in the West (Fig. 4), there
are many more forecast clusters than observed clusters
with reasonably similar precipitation amounts. The CA
rightly associates these forecast and observed clusters,
matching multiple forecast clusters with fewer observed
clusters.

One perplexing feature of the x–y–p error surface is
in its lowest value; it occurs when the number of clus-
ters in the observation field is larger than that of the

8 This threshold is introduced only to reduce the size of the data
and to expedite CA.

TABLE 2. The matched observed and forecast clusters in Fig. 3,
and the distance/error between them, assuming five clusters in
each of the observed and forecast fields, respectively.

Cluster x–y x–y–p

A 0.15 0.87
B 0.14 0.55
C 0.33 0.51
D 0.26 0.26

Avg 0.22 0.55
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forecast field. This is the opposite of the situation in the
x–y analysis. This is likely due to the greater variability
of precipitation amount in the observation field. While
visually there are more clusters in the forecast field
than the observation field, especially in the West, when
precipitation amount is taken into account, the more
variable observation field naturally decomposes into
more clusters than the smoother forecast field.

Moving away from the analysis of the error surface,
one may compare the forecast field with the observa-
tion field at a specific scale. For illustration purposes
(and economy of color), the point (NCo � 5, NCf � 5)
is selected. Figures 6 and 7 show the clusters, and the
distances are shown in Table 3. The matching of the
clusters is visually consistent. For the x–y analysis (Fig.

6) according to Table 3, the black, red, and blue clusters
have the lowest errors. The scattered clusters in the
western region have the highest error. The orange-
colored cross-shaped clusters are the false alarms and
misses.

To assess the effect of precipitation amount, the
x–y–p results are shown at the same scale (i.e., NCo �
5, NCf � 5). Figure 7 shows the structure of the clusters
in the two fields, and Table 3 shows the distances be-
tween the various matched clusters. The pattern is simi-
lar to the x–y pattern, with one exception: the black and
red clusters now have some of the highest errors. The
reason these clusters emerge as poor forecasts in the
x–y–p analysis is, therefore, the wrong amount of pre-
cipitation forecast in these clusters, a fact that is clear in

FIG. 4. (top) Observation and (bottom) forecast fields in COAMPS data.
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Fig. 4. The scattered clusters in the western region are
now matched, with the corresponding forecast clusters
without any misses. The false alarms and misses
are now in the eastern regions and are again labeled
with orange-colored cross-shaped symbols. Recall that
these conclusions are based on x–y–p results, and so
“good” and “bad” forecasts refer to the placement of a
cluster as well as the amount of precipitation forecast
within it.

7. Conclusions and discussion

It is shown that agglomerative hierarchical CA can
identify sensible clusters in an observation and a fore-
cast field. The introduction of a few other concepts
(e.g., the distance between a cluster in an observation
field and one in the forecast field) sets the stage for a
methodology whereby verification can be performed
objectively, and in an object-oriented fashion. The final

FIG. 5. A contour plot of the error surface based on (top) x–y and (bottom) x–y–p analysis.
The sidebar displays the natural log of the errors.
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“product” of the methodology is an “error surface” that
represents forecast error values as a function of two
quantities: the number of clusters in the observation
field and that in the forecast field. It is argued that these
two quantities span different scales, and so the error
surface assesses the error of the forecasts at different
scales.

The practical utility of the error surface is in its abil-
ity to represent forecast errors over all scales in an
event-based or object-oriented sense. Ideally, of two
forecast systems, the one that produces a lower error
surface would be considered the better one. Of course,
in practice, the error surfaces of the two forecast sys-
tems may cross one other, in which case one can then
state the scales over which one system outperforms the
other.

In its current form, the proposed methodology can-

not be fully automated without some loss of informa-
tion. Some amount of automation is possible, as in the
CA portion of the analysis and the computation of the
distances between the clusters. However, the outcome
of the procedure is a multidimensional entity (e.g., the
contour plot assessing the error of the forecasts at dif-
ferent scales) that calls for some interpretation. It is, of
course, possible to specify the scale of interest a priori,
thereby reducing the dimensionality of the problem.
One may even distill the information contained in the
contour plot to a scalar quantity, such as an average
over all scales. However, it remains true that the con-
tour plot representing the error surface carries more
information and is more useful in identifying the scales
over which the forecasts are poor.

It would be desirable to include in the procedure
variables that allow the separation of strong convective

FIG. 6. Clusters identified in the (a) observation and (b) forecast fields, with the colors indicating the
match. The analysis is done in x–y space. The orange crosses mark false alarms and misses.
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events from stratiform precipitation, such as cloud base
and height, precipitation rate, horizontal extent of
cloud, and so on. This idea will be further developed in
the future.

Another desirable revision to the methodology
would replace the proposed cluster-matching criterion
with a more “fuzzy” criterion that would allow clusters

to be matched even if their distance does not strictly
meet some criterion. Such an approach would not only
be more consistent with the statistical nature of the
methodology, but it could potentially reduce the exces-
sive appearance of single-member clusters in a field.
The works of Brown et al. (2004), Bullock et al. (2004),
and Chapman et al. (2004) are important in this con-
nection.

As previously mentioned, although CA is incapable
of identifying embedded clusters if the clusters are de-
fined in terms of only spatial coordinates, it does allow
for embedded clusters if the clusters are defined in
terms of spatial coordinates and the amount of precipi-
tation. There exist other types of cluster analysis
(model based) techniques that do allow for a larger
variety of clusters (even in x–y space). It will be worth-
while to explore such methods.

Given that the methodology matches an observed

FIG. 7. Same as in Fig. 6 but in x–y–p space.

TABLE 3. The closest observed and forecast clusters, and the
distance between them for NCo � 10 and NCf � 10. The “X” here
(orange crosses in Fig. 6) corresponds to a false alarm cluster.

Observation x–y x–y–p

Black 0.45 1.56
Red 0.34 1.37
Green 0.74 1.11
Blue 0.47 0.95
Orange X X
Avg 0.50 1.25

OCTOBER 2006 M A R Z B A N A N D S A N D G A T H E 835

Fig 7 live 4/C



cluster with a forecast cluster, it is possible to assess the
quality of the match in terms of the amount of precipi-
tation in the two. Specifically, it is natural to compare
the distribution of precipitation in the two clusters. Pre-
liminary tests, based on a Student’s t test, have been
performed. On the particular datasets examined here,
the tests suggest that the difference between the means
of the distributions is not statistically significant. In the
future, more robust tests (e.g., Kolmogorov–Smirnov)
will be explored.

The criterion for identifying false alarm and missed
clusters developed here relies on the idea that the no-
tion of an anomalous cluster is one that is perceived
from the placement of all other clusters in a field. After
all, if a forecasting model places all clusters precisely in
observed locations (and with the right amount of pre-
cipitation), then even the smallest deviation will be con-
sidered an anomalous cluster. As such, the criterion is
adaptive in the sense that it varies from forecast to
forecast. And yet, it does require specifying a distance
threshold above which clusters are labeled as false
alarm or missed; the parameter that controls that dis-
tance in this analysis is the multiplier z in (median �
z	), here set to 1. An alternative, more objective, ap-
proach that is being tested is to perform CA on the
combined set of forecasts and observations. In principal,
CA should cluster observed and forecast clusters that
are relatively close to one another. Clusters will then be
composed of both observed and forecast clusters. As
such, cluster matching can be done by CA itself. Thus,
any cluster that does not contain a comparable amount
of observed and forecast clusters can then be called a
false alarm or a miss. Preliminary work suggests that
this is a promising method in terms of rendering the
cluster-matching step here more objective.

As mentioned previously, experimentation shows
that z also controls the extent of the reach (toward the
upper-right corner in Fig. 5) of the ridge appearing in
the error surface (e.g., Fig. 5a). Recall that the initial
motivation for introducing this multiplier was to allow
for an objective identification of outliers, that is, false
alarms and misses. Experiments suggest that the ridge
strengthens with smaller values of z, which in turn
yields more false alarms and misses. As such, any error
associated with the false alarms and misses is apt to
affect the ridge. This issue will be addressed in the fu-
ture when an objective method for assigning these er-
rors is developed.

As also mentioned previously, one virtue of cluster
analysis for performing verification is that the cluster-
ing may be performed on multiple variables. Here, the
addition of precipitation to the set of spatial coordi-
nates is shown to allow for more complex clusters. It is

likely that the inclusion of variables that represent dif-
ferent physical processes, such as cloud base and height
(to distinguish cloud type) or even surface temperature
(to distinguish air mass), will lead to more physically
meaningful clusters.

In a related issue, the normalization of the variables
assures that the spatial variables’ contribution to dis-
tance measures is comparable to that of the precipita-
tion variable. However, it is conceivable that certain
applications would require more weight being placed
on the spatial variables, or on the precipitation variable.
It is, therefore, natural to introduce a metric on the
space of variables that defines the contribution each
variable is expected to make to the distances. Such a
metric can be useful even in the current analysis. For
example, the rather distant association of the black
clusters in Fig. 7 is clearly and undesirably dominated
by the amount of precipitation in those clusters. A met-
ric that downweighs the contribution of precipitation
will alleviate such problems.

The proposed methodology is demonstrated on pre-
cipitation fields. Other fields that are more continuous
may not benefit from this approach, for physically sen-
sible clusters may not naturally emerge in the data. It
will be interesting to test the idea of cluster-based veri-
fication with sea level pressure data, such as in tracking
low pressure systems and identifying missed systems for
both NWP and climate prediction verification.

It must be acknowledged that issues related to scale
are treated somewhat cavalierly in this paper, for the
primary aim of the study is the introduction and illus-
tration of an object-oriented verification method. It is
easy to show (although not done here) that the variance
of the data is highly dependent on the scale of the prob-
lem.9 As such, the points raised by Tustison et al. (2001,
2003) and Harris et al. (2001) are highly relevant and
must be taken into account for more practical (less
pedagogical) applications.
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APPENDIX

Intercluster Distance as a Function of Cluster Size

As mentioned above, the group average distance
(and CLINK) with an L2 norm has the unusual prop-
erty that it increases with decreasing cluster size. In this
appendix, all six distance measures are examined. Some
lend themselves to exact/analytic results, while others
are examined numerically. Specifically, consider two
circular clusters of radius r and R, with their centers

separated by a distance d, residing on a grid of cell size
1. We ask: What is the intercluster distance as a func-
tion of the size of the clusters and the distance between
their centers?

From the definitions in Eq. (1), the answer is evident
for the SLINK and CLINK methods: (d � r � R) and
(d � r � R), respectively. Note that while they both
increase with d, the former decreases with increasing
cluster size. For group average distance, however, the
sums are difficult to perform analytically.A1 The top
panel in Fig. 8 shows group average distance with the
L2 norm as a function of d, for five different values of
r � 1, 3, 5, 7, and 9, while R has been fixed at 5. The
bottom panel in Fig. 8 shows the same quantity but with
an L1 norm. First, note that both increase with center-
to-center distance d. However, the former decreases as
a function of cluster size r, while the latter increases
with r.

In short, the group average distance and CLINK
have the property that they increase with smaller clus-
ter size. This property helps in preventing a prolifera-
tion of false alarms and misses in the analysis.
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