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ABSTRACT

Knowledge of the relationship between model parameters and forecast quantities is useful because it can
aid in setting the values of the former for the purpose of having a desired effect on the latter. Here it is
proposed that a well-establishedmultivariate statistical method known as canonical correlation analysis can
be formulated to gauge the strength of that relationship. Themethod is applied to several model parameters
in the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) for the purpose of ‘‘con-
trolling’’ three forecast quantities: 1) convective precipitation, 2) stable precipitation, and 3) snow. It is
shown that the model parameters employed here can be set to affect the sum, and the difference between
convective and stable precipitation, while keeping snow mostly constant; a different combination of model
parameters is shown to mostly affect the difference between stable precipitation and snow, with minimal
effect on convective precipitation. In short, the proposed method cannot only capture the complex re-
lationship between model parameters and forecast quantities, it can also be utilized to optimally control
certain combinations of the latter.

1. Introduction

The relationship between model parameters and
forecast quantities is often complex, but knowledge of
that relationship has both theoretical and practical con-
sequences. The former can shed light on the underlying
physics, and the latter can help in setting the values of
the model parameters to have some desirable effect on
the forecasts. Numerous attempts at statistically mod-
eling such relationships have been made (Gombos and
Hansen 2008; Hacker et al. 2011; Torn and Hakim
2008).
In a recent study, Marzban et al. (2014) examined the

relationship between 11model parameters in theCoupled

Ocean–Atmosphere Mesoscale Prediction System
(COAMPS)1 and each of four forecast quantities:
24-h accumulated 1) convective, 2) stable, 3) total
precipitation, and 4) snow. The approach employed
a variance-based sensitivity analysis (Marzban 2013),
ideally suited to the situation where a single forecast
quantity is of interest.
One limitation of that work is that it does not in-

corporate relationships that are known to exist between
forecast quantities. For example, as shown below, model
parameter values that lead to increased convective
precipitation are generally associated with decreased
stable precipitation. In a fully multivariate treatment of
multiple model parameters and multiple forecast quan-
tities, it is important to account not only for associations
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between model parameters and forecast quantities, but
also between forecast quantities and between model pa-
rameters. Said differently, the sensitivity analysis method
employed in Marzban et al. (2014) takes into account
associations between model parameters and forecast
quantities, but not within model parameters, nor within
forecast quantities. In this sense, that analysis is not
a truly multivariate analysis.2

Multivariate methods are generally divided into two
groups which (in the realm of machine learning) are
referred to as supervised and unsupervised (Bishop
1996). The defining feature of the former class is the di-
vision of the variables under study into a set of predictors
and a set of responses, and the goal is to infer a relation-
ship between the two sets. An example of such a method
is regression (Draper and Smith 1998). By contrast, such
a distinction is not made in unsupervised methods. In-
stead, the goal is to find a combination of variables that
account for most of the variability in the data. Principal
components analysis (PCA) is a well-known example of
an unsupervised method (Abdi and Williams 2010;
Jolliffe 2002). The method employed here, known as
canonical correlation analysis (CCA), borrows from both
approaches in that the task involves two sets of variables,
but the main goal is to find combinations of variables in
one set and combinations of variables in the second set,
which are most correlated with one another. In the cur-
rent application the two sets of variables are the model
parameters and the forecast quantities.
CCA (Anderson 2003; Glahn 1968; Mardia et al.

1979) is suited to understanding the relationship be-
tween model parameters and forecast quantities because
1) it treats the two sets of variables symmetrically, and
2) it takes into account relationships within each set. The
symmetry is desirable because it provides a wholistic as-
sessment of the relationship in the same sense in which
Pearson’s correlation coefficient provides a summary of
the relationship between two quantities. Indeed, CCA
can be described as a multivariate generalization of the
correlation coefficient (analysis). The second feature is
important because the relationship between two sets of
variables can be confounded by the relationships between
the variables within each set. By contrast, a regression
approach treats the two sets of variables asymmetrically
in that the map from the model parameters to the
forecast quantities is not the same as the map from fore-
cast quantities to model parameters. Also, in regression,
the relationship between response variables is not

incorporated into the analysis. As such, for the problem
at hand, CCA is more appropriate than a strictly re-
gression approach. CCA is also more appropriate than
any unsupervised approach (e.g., PCA), because it is
the relationship between two sets of distinct variables that
is of interest—a defining feature of CCA. It is worth
mentioning that in spite of the differences between CCA
and regression, many multivariate techniques (including
CCA) can be formulated within a multivariate regression
framework (i.e., with multiple predictors and multiple
responses) wherein the two sets of data have been
transformed in certain ways (Tippett et al. 2008).
CCAhas beenwidely used in the atmospheric sciences,

butmostly for the purpose of identifying predictors of the
primary modes of oscillations in the climate, such as
El Ni~no–Southern Oscillation (ENSO; Barnston and
Ropelewski 1992; Nicholls 1987), Pacific decadal oscilla-
tion (PDO; Livezey and Smith 1999), or the North Pacific
Oscillation (NPO; Anderson and Maloney 2006). CCA
has been used for the prediction of monsoon rainfall
(Singh et al. 2012), and a probabilistic extension of CCA
has been developed and applied to Pacific sea surface
temperatures by Wilks (2014).
The outline of this paper is as follows: the next section

briefly describes the dataset under study. To set the stage
for CCA, the method section begins with an application
of regression to the data at hand; that analysis not only
introduces the notation for the remainder of the paper,
but its results also serve to reduce the number of model
parameters under investigation. The results of CCA,
presented next, suggest that certain combinations of the
model parameters are highly correlated with certain
combinations of the forecast quantities. It is found that
further diagnosis of these combinations provides useful
guidance in better setting the values of the model pa-
rameters. The paper ends with a summary and a discus-
sion of the results and of future work.

2. Data

The dataset used in this study is that used in Marzban
et al. (2014). The experimental design underlying the
data is described by Bowman, Sacks and Chang (1993),
Sacks et al. (1989), Santner et al. (2003), andWelch et al.
(1992). Briefly, Latin hypercube sampling (Cioppa and
Lucas 2007; Marzban 2013; Marzban et al. 2014) is used
to generate 99 values of 11model parameters. The choice
of the model parameters is based on Holt et al. (2011).
The result is data on model parameters, often called the
empirical region. For each of the 99 points in the empir-
ical region, the atmospheric portion of COAMPS (Hodur
1997; Doyle et al. 2011; Jiang and Doyle 2009), version
4.2.2, is used to generate 24-h forecasts of three quantities:

2 In Marzban et al. (2014), as well as in the current study, the
values of the model parameters are selected in a manner that
precludes any association between them.
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accumulated 1) convective precipitation, 2) stable (or grid
scale) precipitation, and 3) snow.3 The forecasts are
generated for each of 36 dates, beginning with 1 January
and ending with 4 July 2009, at approximately 4-day in-
tervals to assure independence. For each of the 99 model
parameter values, and for each date, the 90th percentile
(across the spatial domain) of the forecast quantities is
computed. These quantities (measured in mm) constitute
the forecast quantities of interest in this work. In other
words, the focus of the current study is on ‘‘heavy’’ pre-
cipitation and snow. Here, these three forecast quantities
are denoted by the symbols conv, stab, and snow, re-
spectively. The model parameters are shown in TT1 able 1.
The COAMPSmodel was forced using 0.58 resolution

initial and one-way boundary conditions from the Navy
Operational Global Atmospheric Prediction System
(NOGAPS). The COAMPS analysis domain is a 72 3
45 grid, roughly covering the continental United States,
and the fields are based on NOGAPS initial fields and
local observations. Given that the focus of the CCA
method is inferring a map relating forecast quantities and
model parameters—not forecast quality—for computa-
tional efficiencyCOAMPS is run at a resolution of 81 km.

3. Method

As mentioned previously, one of the reasons for
considering CCA for inferring the relationship be-
tween model parameters and forecast quantities is that
it also incorporates relationships between forecast quan-
tities. That the relationship exists at all can be seen in the
scatterplot between the forecast quantities. FF1 igure 1 shows
the scatterplot of stable precipitation versus convective

precipitation for four dates sampled from across the
period available in the dataset. Each panel contains
99 points corresponding to the 99 points in the empirical
region (i.e., each point corresponds to a different value
assigned to the 11 model parameters). These four dates
are selected to illustrate some common features. For
1 January, the relationship is weakly linear, with a nega-
tive slope. A stronger negative association can be seen on
6 February; and on some days (e.g., 18 March) there is
no association between the two forecast quantities at all.
Some of these patterns repeat on different days. For ex-
ample, the pattern seen on 13 May is nearly identical
to that of 1 January. Although not shown here, on ma-
jority of the days the relationship is of the type found on
1 January and 6 February (i.e., linearly and negatively
associated). In the span of dates examined here, on no
day is a positive association observed. In other words,
model parameter settings that lead to increased convec-
tive precipitation are generally associated with decreased
stable precipitation. Similar patterns exist between con-
vective precipitation and accumulated snow, although the
associations are much weaker than those shown in Fig. 1.
It is such linear relationships that CCA takes into ac-
count in identifying combinations of forecast quantities
which are most correlated with combinations of model
parameters.
Before introducing the details of CCA, it is useful to

consider multivariate regression. Let the three forecast
quantities be denoted by yj, where j 5 1, 2, 3, and the
model parameters by xi, where i5 1, . . . , 11. Furthermore,
assume that the data on xi and yj have been standardized
to have zero mean and a standard deviation of 1.4 First,
the following multivariate linear regressionmodel is used

TABLE 1. The 11 parameters studied in this paper. Also shown are the default values and the range over which they are varied.
Kain–Fritsch (KF) (Kain and Fritsch 1993), planetary boundary layer (PBL), and lifting condensation level (LCL).

Name Description Default Range

mixlen Linear factor that multiplies the mixing length within the PBL 1.0 0.5, 1.5
sfcflx Linear factor that modifies the surface fluxes 1.0 0.5, 1.5
wfctKF Linear factor for the vertical velocity (grid scale) used by KF trigger 1.0 0.5, 1.5
delt1KF (8C) Temperature increment at the LCL for KF trigger 0 22, 2
delt2KF (8C) Another method to perturb the temperature at the LCL in KF 0 22, 2
prcpfrac Fraction of available precipitation in KF, fed back to the grid scale 0.5 0, 1
cloudrad (m) Cloud radius factor in KF 1500 500, 3000
autocon1 (kgm23 s21) Autoconversion rate coefficient for the microphysics 0.001 1 3 1024, 1 3 1022

autocon2 (kgm23 s21) Autoconversion mass threshold value 4 3 1024 4 3 1025, 4 3 1023

rainsi (m21) Slope intercept parameter for rain in the microphysics 8.0 3 106 8.0 3 105, 8.0 3 107

snowsi (m21) Slope intercept parameter for snow in the microphysics 2.0 3 107 2.0 3 106, 2.0 3 108

3 Total precipitation, analyzed in Marzban et al. (2014), is not
analyzed directly here because it is simply the sum of convective
and stable precipitation.

4 For any quantity u, such a standardization is obtained by
(uk 2u)/s, where uk is the kth observation of u; and u and s are the
sample mean and sample standard deviation of u, respectively.
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to represent the relationship between the xi and the yj
(Hastie et al. 2001):

yj 5b0j 1 !
11

i51
bjixi 1 !j, j5 1, 2, 3, (1)

where the errors !j are assumed to have normal distri-
butions with zero mean; for clarity, in this equation the
case index is not shown. Estimates of the b coefficients
provide a measure of the importance of the correspond-
ing xi in terms of its effect on the yj. Interpreting re-
gression coefficients in this manner can be problematic
if the predictors are collinear; but this is not a problem
in the current study because the model parameters are
sampled (Marzban et al. 2014) in a way to assure that
there is no collinearity.
It can be shown (Hastie et al. 2001, p. 54; Tippett et al.

2008AU1 ) that the minimization of mean-squared error for
the model in Eq. (1) actually leads to estimates of the b

parameters as if they were estimated via three separate
regression fits, one for each of yj. As such, the model is
inadequate in the sense that it does not incorporate the
relationships between forecast quantities. However,
such amodel is still useful in that it allows one to identify
which parameters have no affect at all on any of the
forecast parameters. As shown below, this model is used
to reduce the number of model parameters from 11 to 8.
A fully multivariate analysis is provided by CCA. In

fact, the basic quantities of CCA are linear combinations
of xi and linear combinations of yj. They are referred to as
canonical variates (CV) of x and y, respectively—or CV
pairs, in general. The goal of CCA (in its simplest form)
is to find CV pairs with the highest possible Pearson’s
correlation coefficient. When such a pair exists, the
coefficients in the respective CVs—called loadings—
measure the contribution of the corresponding variable
to that CV in the same way in which the b coefficients in
the regression model in Eq. (1) measure the contribution

FIG. 1. Scatterplot of stable precipitation vs convective precipitation, across 99 points in parameter space, for four
different days.
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of xi to yj. For example, a loading of 0.6 for a given model
parameter means that a change of one standard deviation
in that model parameter is expected to lead to an aver-
age change of 0.6 in the corresponding CV. Similarly,
a loading of 0.7 for a given forecast quantity means that
a change of one standard deviation in that quantity is
expected to lead to an average change of 0.7 in its CV.
Examination of the loadings on the CV pairs often allows
one to associate a physical meaning to the quantity rep-
resented by the CV pairs. As in PCA, the interpreta-
tion of the loadings is not unique (Jolliffe 2002), but that
is not a problem here because our focus is not on
identifying a physical underlying process. Themain aim
here is to identify the CV pairs for the purpose of op-
timally controlling the forecast quantities; a unique
interpretation of the loadings is not necessary for that
purpose.
CCA is performed on eight model parameters (se-

lected based on the aforementioned multivariate re-
gression analysis) and the three forecast quantities, for
each of the 36 days in the dataset. The distribution, across
days, of the loadings is then summarized by boxplots. If
the boxplot of the loading for a given model parameter is
centered near zero, then that model parameter can be
considered unimportant in terms of its reliability in af-
fecting the forecast parameters, because on the average
(across days) the loading is near zero. Here, no objective
criterion is employed to decide whether or not a boxplot

is ‘‘centered near zero,’’ and as such the interpretation of
these boxplots is necessarily qualitative; but this approach
does have the advantage of displaying the daily vari-
ability of the effect of themodel parameters on forecast
quantities.
For instance, a relatively wide boxplot for the loading

of a given model parameter implies large daily vari-
ability, and so, that model parameter can be considered
unreliable because its effect on the forecast quantities
will be inconsistent across days. Although, an attempt is
made here to maintain the qualitative nature of the
conclusions, at times an appeal to some criterion is made
in order to simply the conclusions; for example, if zero
falls within the interquartile range (i.e., within the box of
the boxplot), then the corresponding variable is con-
sidered to be unimportant.

4. Results

F F2igure 2 shows the distribution of the b regression
coefficients in Eq. (1), for each of the forecast quantities.
Each boxplot summarizes the distribution (across 36 days)
of the regression coefficients corresponding to the model
parameters.5 It can be seen that convective precipitation

FIG. 2. The distribution, across 36 days, of the regression coefficients [b in Eq. (1)] associated
with 11 model parameters (along x axis) when the response is (top) convective precipitation,
(middle) stable precipitation, and (bottom) snow.

5 The circles denote outliers, conventionally defined by any case
beyond 1.5 times the interquartile range of the mean.
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(top panel) is affected mostly by the fraction of avail-
able precipitation in Kain–Fritsch (KF) fed back to the
grid scale (prcpfrac) and the temperature increment at
the lifted condensation level (LCL) for the KF trigger
(delt1KF). Specifically, and as expected, an increase in
the former (latter) is accompanied by a decrease (in-
crease) in convective precipitation. Themodel parameter
associated with a different method to perturb the tem-
perature at the LCL in KF (delt2KF), the cloud radius
factor in KF (cloudrad), and a linear factor that modifies
the surface fluxes (sfcflx) also affect convective pre-
cipitation, but to a much lower degree. The remaining
model parameters have little or no effect on convective
precipitation. These conclusions are consistent with those
found in Marzban et al. (2014).
As seen in Fig. 2 (middle panel), stable precipitation is

most affected by sfcflx, followed by prcpfrac, delt1KF,
and the autoconversion factor for the microphysics
(autocon2), and to a far lower degree by the slope in-
tercept parameter for snow in themicrophysics (snowsi).
As for snow (Fig. 2, bottom panel), the relatively large

daily variability in the regression coefficients, reflected
in the size/spread of the boxplots, suggests that snow is
a more difficult forecast quantity to control with model
parameters. It appears that the snow slope intercept
parameter is the only of the 11 parameters with an un-
ambiguous effect on snow. A linear factor that multi-
plies the mixing length within the PBL (mixlen), the
surface flux factor (sfcflx), and the slope intercept pa-
rameter for rain in the microphysics (rainsi) all have
marginal effects on snow either because of the large
variability of the regression coefficients, or because zero
falls within the interquartile range of the distribution.
Although the 11 model parameters have a complex

relationship with the 3 forecast quantities, it appears
that the parameters mixlen, wfctKF (a linear factor for
the vertical velocity used by KF trigger), and autocon1
have little or no effect on any of the forecast quantities.6

Therefore, these parameters are henceforth excluded
from analysis, reducing the number ofmodel parameters
from 11 to 8.
Note that an increase in the fraction of available

precipitation (prcpfrac) is associated with a decrease in
convective precipitation (top panel) but an increase in
stable precipitation (middle panel). Similarly, delt1KF is
positively associated with convective precipitation but
negatively associated with stable precipitation. In other

words, the effect of the parameters on the forecast
quantities is complex. The CVs constructed in CCA are
designed to incorporate such relationships.
In applying CCA to the data at hand, the first question

is (in admittedly poor English) ‘‘what linear combination
of model parameters is most correlated with what linear
combination of forecast quantities?’’ Given that there are
only three forecast quantities present, only three such
linear combinations can be formed. The linear combi-
nations (i.e., the CVs) and the coefficients in each linear
combination (i.e., the loadings) are the central entities
in CCA.
By design, the largest correlation coefficient is be-

tween the first CV of the model parameters and the first
CV of the forecast quantities. For the first day in the data
set it is 0.936. The analogous correlations for the second
and third CVpairs are 0.918, and 0.832. AWilk’s Lambda
test (Knapp 1978) of all three correlations leads to near-
zero p values, implying that these correlations are statis-
tically significant. The histogram (across 36 days) of the
three correlations is shown F F3ig. 3. It is clear that all of
the correlations are relatively large; the corresponding
p values (not shown) are all near-zero. This suggests that
there exist linear combinations of the model parameters
which are highly correlated with linear combinations of
the forecast quantities. A scatterplot of theCVof y versus
the CV of x, across the 99 cases, displays a linear re-
lationship for each of the three CVs, and for each of the
36 days. As such, it appears to be sufficient to examine
only linear combinations of the model parameters and of
the forecast quantities.
The loadings for the first CV of the model parameters

and the first CV of the forecast quantities are shown in
the top row of F F4ig. 4. Evidently, the first CV of themodel
parameters is mostly a measure of the surface flux factor
(sfcflx). With the exception of the temperature pertur-
bation parameter (delt2KF) and the slope intercept
parameter for rain (rainsi), which have no contribution
to the first CV, the fraction of available precipitation
parameter (prcpfrac), the autoconversion mass thresh-
old (autocon2), and the slope intercept parameter for
snow (snowsi), all appear to have some contribution to
the first CV, but to a much lower degree than sfcflx. The
cloud radius factor (cloudrad) plays a unique role in that
its boxplot is mostly below the horizontal line at zero,
but only nearly so. In other words, that parameter ap-
pears to have a nonzero, albeit small, contribution to the
first CVof themodel parameters. As seen in the top-right
panel in Fig. 4, the first CV of the forecast quantities es-
sentially measures the sum of convective and stable pre-
cipitation. The large daily variability of the loading for
snow implies that its contribution to the first CV is highly
variable across days, and in that sense unreliable. To first

6 The manner in which these parameters are found to be un-
important assumes that they do not interact with other parameters.
Marzban et al. (2013) addressed the issue of interactions and found
that they are statistically nonsignificant.

6 MONTHLY WEATHER REV IEW VOLUME 00

JOBNAME: MWR 00#00 2014 PAGE: 6 SESS: 8 OUTPUT: Wed Mar 5 19:17:39 2014 Total No. of Pages: 10
/ams/mwr/0/mwrD1300245



approximation, therefore, the surface flux factor (sfcflx)
alone is the best parameter for controlling total pre-
cipitation. Specifically, an increase of about one standard
deviation in sfcflx is expected to increase total preci-
pitation by approximately 0.8 standard deviations. An
even more efficient way of increasing total precipitation
would involve additionally decreasing the fraction of
available precipitation (prcpfrac), and increasing auto-
con2 and snowsi, all by about 0.2 standard deviations. All
of these standard deviation values are approximate and
refer to the median of the boxplots.
The second CV of the model parameters mostly rep-

resents the difference between prcpfrac and delt1KF
(Fig. 4,middle-left panel), because these parameters have
the largest loadings, and appear with opposite signs. By
similar reasoning, the second CV of the forecast quanti-
ties is mostly a representation of the difference between
convective and stable precipitation (Fig. 4, middle-right
panel). This is useful, because it implies that if one desires
to increase convective precipitation and simultaneously
decrease stable precipitation, while not affecting snow
appreciably, then the best way is to decrease prcpfrac and
increase delt1KF simultaneously. A more effective way
of having the same effect on the forecast quantities would

involve also increasing delt2KF while decreasing sfcflx
and snowsi. The magnitude of the changes can be de-
termined from the y values in Fig. 4 (middle panels).
As shown in Fig. 4 (bottom-left panel), the third CV of

the model parameters appears to be mostly affected by
the snow slope intercept parameter (snowsi), and to
a lesser degree by the autoconversion mass threshold
parameter (autocon2) and the rain slope intercept pa-
rameter (rainsi). At first approximation, the third CV of
the forecast quantities is dominated by snow (Fig. 4,
bottom-right panel). As such, the best way of increasing
snow is to increase snowsi. Examining the next level of
contributions to the CV pairs, autocon2 and rainsi do
have some contribution to the CV of the parameter
values; and the CV for the forecast quantities appears to
have a relatively large (and negative) loading on the two
types of precipitation. All of these boxplots show large
daily variability, and therefore, the effect of the model
parameters on the forecast quantities is likely to be
highly variable across days. On the average, however,
a decrease in autocon2 and rainsi (in addition to an in-
crease in snowsi), is expected to lead to an increase in
snow and a simultaneous (but variable) decrease in total
precipitation.

FIG. 3. The histogram, across 36 days, of the correlation coefficients between CV pairs.
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5. Summary and discussion

The effect of model parameters on forecast quantities
is examined through multivariate statistical techniques.
First, multivariate regression (i.e., with multiple pre-
dictors and multiple responses) is used to show that the
linear factor that multiplies the mixing length within the
PBL (mixlen), the vertical velocity factor (wfctKF), and
the autoconversion factor for the microphysics (auto-
con1) have little to no effect on any of the forecast pa-
rameters examined—convective precipitation, stable
precipitation, and snow. Eight other model parameters
are found to have some type of effect on the forecast
quantities. The relationship is found to be complex in
that no single model parameter individually controls
a single forecast quantity. Then CCA is employed to test
whether any combination of forecast quantities and any
combination of model parameters are well correlated. It
is found that such combinations (i.e., CVs) do exist. The
most-correlated CV pairs have correlation coefficients
in the 0.88–0.98 range across 36 days. Two other CV
pairs have correlation coefficients in the 0.81–0.92, and

0.61–0.86 range, respectively. All of these correlations
are statistically significant with near-zero p values.7

A qualitative analysis of the contribution (i.e., load-
ings) of the model parameters and the forecast quanti-
ties to their respective CVs suggests several conclusions,
with varying levels of complexity. At the simplest level,
the surface flux factor (sfcflx) alone is responsible for
controlling total precipitation (convective plus stable),
while leaving snow mostly unaffected. By contrast, an
increase in the difference between convective and stable
precipitation is best obtained by a decrease in the fraction
of available precipitation (prcpfrac) and an increase in
the temperature increment at the LCL for KF trigger
(delt1KF). Finally, an increase in snow alone is best ac-
complished through an increase in the slope intercept
parameter for snow in the microphysics (snowsi). More
complex relationships are also present, but at a weaker
level.

FIG. 4. The distribution, across 36 days, of the loadings (left) on the model parameters and (right) on the forecast
quantities for the three CV pairs. The circles denote outliers (defined in text).

7 The largest p value for any CV pair and on any day is 0.000 45.
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It is important to recall that some parameters are found
to be unimportant because of the large daily variability
associated with them. It is possible that these parameters
are in fact important (i.e., have a significant effect on
forecasts), but only for certain meteorological events
(e.g., fronts). It will be worthwhile to repeat the analysis
performed here, but on datasets partitioned according to
weather types. A geographic partitioning of the data may
also be useful in revealing any spatial dependence of the
results.
The above approach identifies certain combinations

of the forecast quantities that are most affected by the
model parameters. Amore useful approach would allow
one to control any combination of the forecast quantities.
For example, one may desire to increase stable preci-
pitation, while keeping convective precipitation and snow
constant. That particular combination does not arise in
the CCA performed here. Although it is possible that the
inclusion of other model parameters can allow one to
control other combinations of the forecast quantities,
a more direct method would be to simply model the
relationship between xi and yj, but using the yj (forecast
quantities) as predictors and xi (model parameters) as
responses. In such a model, one can find the optimal
combination of the model parameters for any desirable
outcome on the forecast quantities. A multivariate re-
gression model of the type in Eq. (1), with xi and yj
switched, will not be adequate because, as mentioned
before, such amultivariate regressionmodel is equivalent
to a system of independent single-response regression
models. Such a model will, therefore, not incorporate the
relationship between the forecast quantities. CCA will
also be inadequate, because it is inherently symmetric
with respect to the xi and yj variables. Examining linear
combinations of the CVs themselves will also not allow
one to control each forecast quantity separately. Alter-
native approaches that will allow one to implement any
desirable effect on the forecast quantities are currently
under investigation.
In the current application of CCA, it has been em-

ployed to identify combinations of predictors and com-
binations of responses that are most correlated. In this
sense, CCA is similar to two PCAs: one on the predictors
and another on the responses. Also, as in PCA, one can
generate predictions not only for the CVs, but also for the
physical response variables. The predictive aspect of
CCA has been emphasized by Glahn (1968) and Wilks
(2014). Here, the predictive facet of CCA has not been
utilized, because focus has been placed on the task of
identifying the aforementioned combinations, and their
daily variability. The quality of the resulting models has
been assessed in terms of the correlation coefficient be-
tween the CVs. Viewing a CCA model as a prediction

model allows for assessing the quality of the model by
comparing its predictions with observations.Although the
results of that analysis are not presented here, it is found
that the correlation coefficient between observations and
predictions is generally in the 0.5–0.9 range, with the ex-
ception of a few days for which the correlation coefficients
are very low (,0.4). A more complete assessment using
verification methods may reveal why CCA is not a good
model for some of the days in the dataset examined here.
Another possible generalization of this work is to allow

for nonlinear relationships between the model parame-
ters and forecast quantities, and/or allow interactions
within each set. There exist multiple ways of incorporating
nonlinear relations, ranging from the more traditional
(Luijtens et al. 1994) to more recent approaches based on
neural networks (Cannon and Hsieh 2008; Hsieh 2000).
Modeling nonlinear relationships is generally more com-
plex than that of linear relationships, because care must
be taken to avoid overfitting.More data are also required,
and so, that work will be considered in the future.

Acknowledgments. Partial support for this project was
provided by the Office of Naval Research Grants
N00014-01-G-0460/0049 and N00014-05-1-0843. C.M.
thanks useful conversations with William Hsieh, and
J.D.D. acknowledges the support of the Chief of Naval
Research through Program Element 0601153N of the
Naval Research Laboratory Base Program.

REFERENCES

Abdi, H., and L. J. Williams, 2010: Principal component analysis.
Wiley Interdiscip. Rev.: Comput. Stat., 2, 433–459, doi:10.1002/
wics.101.

Anderson, B. T., andE.Maloney, 2006: Interannual tropical Pacific
sea surface temperatures and their relation to preceding sea
level pressures in the NCAR CCSM2. J. Climate, 19, 998–101,
doi:10.1175/JCLI3674.1.

Anderson, T. W., 2003: An Introduction to Multivariate Statistical
Analysis. 3rd ed. Wiley-Interscience, 752 pp.

Barnston, A. G., and C. F. Ropelewski, 1992: Prediction of
ENSO episodes using canonical correlation analysis. J. Cli-
mate, 5, 1316–1345, doi:10.1175/1520-0442(1992)005,1316:
POEEUC.2.0.CO;2.

Bishop, C. M., 1996: Neural Networks for Pattern Recognition.
Clarendon Press, 482 pp.

Bowman, K. P., J. Sacks, and Y.-F. Chang, 1993: Design and
analysis of numerical experiments. J. Atmos. Sci., 50, 1267–1278,
doi:10.1175/1520-0469(1993)050,1267:DAAONE.2.0.CO;2.

Cannon, A., and W. W. Hsieh, 2008: Robust nonlinear canonical
correlation analysis: Application to seasonal climate forecast-
ing. Nonlinear Processes Geophys., 15, 221–232, doi:10.5194/
npg-15-221-2008.

Cioppa, T., and T. Lucas, 2007: Efficient nearly orthogonal and
space-filling Latin hypercubes. Technometrics, 49, 45–55,
doi:10.1198/004017006000000453.

Doyle, J. D., Q. Jiang, R. B. Smith, and V. Grubii, 2011: Three-
dimensional characteristics of stratospheric mountain waves

MONTH 2014 MARZBAN ET AL . 9

JOBNAME: MWR 00#00 2014 PAGE: 9 SESS: 8 OUTPUT: Wed Mar 5 19:17:59 2014 Total No. of Pages: 10
/ams/mwr/0/mwrD1300245



during T-REX. Mon. Wea. Rev., 139, 3–23, doi:10.1175/
2010MWR3466.1.

Draper, N. R., and H. Smith, 1998: Applied Regression Analysis.
3rd ed. Wiley-Interscience, 736 pp.

Glahn, H. R., 1968: Canonical correlation and its relation-
ship to discriminant analysis and multiple regression.
J. Atmos. Sci., 25, 23–31, doi:10.1175/1520-0469(1968)025,0023:
CCAIRT.2.0.CO;2.

Gombos, D., and J. A. Hansen, 2008: Potential vorticity regression
and its relationship to dynamical piecewise inversion. Mon.
Wea. Rev., 136, 2668–2682, doi:10.1175/2007MWR2165.1.

Hacker, J. P., C. Snyder, S.-Y. Ha, and M. Pocernich, 2011:
Linear and non-linear response to parameter variations in
a mesoscale model. Tellus, 63A, 429–444, doi:10.1111/
j.1600-0870.2010.00505.x.

Hastie, T., R. Tibshirani, and J. Friedman, 2001: The Elements of
Statistical Learning: Data Mining, Inference, and Prediction.
Springer, 533 pp.

Hodur, R. M., 1997: The Naval Research Laboratory’s Cou-
pled Ocean/Atmosphere Mesoscale Prediction System
(COAMPS). Mon. Wea. Rev., 125, 1414–1430, doi:10.1175/
1520-0493(1997)125,1414:TNRLSC.2.0.CO;2.

Holt, T. R., J. A. Cummings, C. H. Bishop, J. D. Doyle, X. Hong,
S. Chen, and Y. Jin, 2011: Development and testing of a cou-
pled ocean-atmosphere mesoscale ensemble prediction system.
Ocean Dyn., 61, 1937–1954, doi:10.1007/s10236-011-0449-9.

Hsieh, W. W., 2000: Nonlinear canonical correlation analysis by
neural networks.Neural Networks, 13, 1095–1105, doi:10.1016/
S0893-6080(00)00067-8.

Jiang, Q., and J. D. Doyle, 2009: The impact of moisture on
mountain waves.Mon.Wea. Rev., 137, 3888–3906, doi:10.1175/
2009MWR2985.1.

Jolliffe, I. T., 2002: Principal Component Analysis. 2nd ed.
Springer, 489 pp.

Kain, J. S., and J.M. Fritsch, 1993: Convective parameterization for
mesoscale models: The Kain-Fritsch scheme. The Represen-
tation of Cumulus Convection in Numerical Models, Meteor.
Monogr., No. 46, Amer. Meteor. Soc., 165–170.

Knapp, T. R., 1978: Canonical correlation analysis: A general
parametric significance-testing system.Psychol. Bull., 85, 410–
416, doi:10.1037/0033-2909.85.2.410.

Livezey, R. E., and T. M. Smith, 1999: Covariability of aspects of
North American climate with global sea surface temperatures
on interannual to interdecadal timescales. J. Climate, 12, 289–
302, doi:10.1175/1520-0442-12.1.289.

Luijtens, K., F. Symons, and M. Vuylsteke-Wauters, 1994: Linear
and non-linear canonical correlation analysis: An exploratory
tool for the analysis of group-structured data. J. Appl. Stat., 21,
43–61, doi:10.1080/757583648.

Mardia, K. V., J. T. Kent, and J. M. Bibby, 1979: Multivariate
Analysis. Academic Press, 521 pp.

Marzban, C., 2013: Variance-based sensitivity analysis: An illus-
tration on the Lorenz’63 model. Mon. Wea. Rev., 141, 4069–
4079, doi:10.1175/MWR-D-13-00032.1.

——, S. Sandgathe, J. D. Doyle, andN. C. Lederer, 2014: Variance-
based sensitivity analysis: Preliminary results in COAMPS.
Mon. Wea. Rev., in press.

Nicholls, N., 1987: The use of canonical correlation to study
teleconnections. Mon. Wea. Rev., 115, 393–399, doi:10.1175/
1520-0493(1987)115,0393:TUOCCT.2.0.CO;2.

Sacks, J., W. J. Welch, T. J. Mitchell, and H. P. Wynn, 1989: Design
and analysis of computer experiments. Stat. Sci., 4, 409–423,
doi:10.1214/ss/1177012413.

Santner, T. J., B. J. Williams, andW. I. Notz, 2003: The Design and
Analysis of Computer Experiments. Springer, 299 pp.

Singh,A.,M.A.Kulkarni, U. C.Mohanty, C. Kar,A.W.Robertson,
and G. Mishra, 2012: Prediction of Indian summer monsoon
rainfall (ISMR) using canonical correlation analysis of
global circulation model product. Meteor. Appl., 19, 179–188,
doi:10.1002/met.1333.

Tippett, M. K., T. DelSole, S. J. Mason, and A. G. Barnston, 2008:
Regression-based methods for finding coupled patterns. J. Cli-
mate, 21, 4384–4398, doi:10.1175/2008JCLI2150.1.

Torn, R. D., and G. Hakim, 2008: Ensemble-based sensitivity
analysis. Mon. Wea. Rev., 136, 663–677, doi:10.1175/
2007MWR2132.1.

Welch, W. J., R. J. Buck, J. Sacks, H. P. Wynn, T. J. Mitchell, and
M. D. Morris, 1992: Screening, predicting, and computer ex-
periments. Technometrics, 34, 15–25, doi:10.2307/1269548.

Wilks, D. S., 2014: Probabilistic canonical correlation analysis fore-
casts, with application to tropical Pacific sea-surface tempera-
tures. Int. J. Climatol., doi:10.1002/joc.3771, in press. AU2

10 MONTHLY WEATHER REV IEW VOLUME 00

JOBNAME: MWR 00#00 2014 PAGE: 10 SESS: 8 OUTPUT: Wed Mar 5 19:18:00 2014 Total No. of Pages: 10
/ams/mwr/0/mwrD1300245




