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1. INTRODUCTION

The rather lofty title of this article may suggest
that the research reported herein may be more
fundamental than it really is! The foundations
of Bayesian techniques in neural networks have
been already laid down in the works of Buntine and
Weigend (1991), MacKay (1996), Neal (1996),
and Wolpert (1993). Bishop (1996) devotes an
entire chapter to the application of Bayesian tech-
niques in neural networks. The present article
aims to only illustrate some of the ideas devel-
oped in these works.

All nonlinear regression and classification
models can over-fit data; over-fitting occurs when
the flexibility/complexity of a model allows it to fit
a data set or a decision boundary to such high
accuracy that the fit is driven by the statistical fluc-
tuations in the data. Consequently, such a model
has no predictive capability. The true cause of this
phenomenon is the finiteness of the sample size.
To restrain overfitting, one traditional approach
calls for splitting the data into several sets - a
training set, employed to estimate the parameters
of the model, a validation set for determining the
complexity of the model, and a test set for esti-
mating the unbiased performance of the model.
‘‘Parameters of the model’’ include the weights
of a parametric model, or smoothing parameters
for estimating probability density functions in non-
parametric models; the ‘‘complexity of the model’’
refers to, for example, the order of a polynomial
regression, or the number of hidden nodes and
the magnitude of the weights in a neural network.

This split-sample procedure suffers from sev-
eral faults the least of which is not employing the
entire data set in each of the three phases. Novel
Bayesian techniques have been developed that
allow for the ‘‘determination" of the complexity of a
model, and the assignment of confidence intervals
to the predictions of the model, given a z[{}|+~V��� data
set.

Sarle (1995) has examined several learning
procedures in the context of regression problems
and has found that the use of the Bayesian method
is fully warranted if the underlying function is ex-
pected to be nonlinear. In the present article,
some aspects of the Bayesian method will be il-
lustrated in a 2-group classification problem, first,���q���h�Z���}�V�h�Z�q�q�j�����=�j�9���}� �j���b�0� �b���

and then applied at a very rudimentary level to the
development of a neural network for the predic-
tion of tornados. Further details will be provided
elsewhere.

2. THE BAYESIAN APPROACH

Conventional learning methods yield a unique
set of weights, whereas Bayesian procedures pro-
duce a posterior distribution for the weights. This
distribution manifests itself as a distribution for
the outputs of the network which, in turn, allows
for the computation of measures of confidence in
the outputs. Therefore, a network that is used
for prediction purposes has its outputs integrated
over the entire distribution of the weights. Such
integration is performed also when there exist
other parameters in the model whose precise val-
ues are not known (though they depend on the
weights). An example of such a (hyper) param-
eter is the coefficient of the ‘‘weight decay" term
in the error function, its purpose being to prevent
the magnitude of the weights from becoming ex-
ceedingly large. Since most activation functions
(e.g., tanh, logistic, etc.) are linear for small val-
ues of the weights, and highly nonlinear for large
values of the weights, the value of the weight-
decay coefficient in the error function affects the
overall nonlinearity (complexity) of the network.
Of course, the other quantity that measures the
nonlinearity of a network is the number of hidden
nodes. It is possible to approximate the relevant
integrals and to express the results in terms of the
most probable values of the parameters and the
errors thereof. In that case, the ‘‘optimal" value
of the weight-decay coefficient and the number of
hidden nodes can be ‘‘inferred" through Bayesian
reasoning.

There are two distinct approaches in the im-
plementation of Bayesian ideas in neural net-
works. Neal (1996) uses exact simulations, and
advocates the point of view wherein a large num-
ber of hidden nodes are to be selected and then
controlled through hyperparameters. MacKay
(1996), on the other hand, approximates the pos-
terior distributions thereby allowing for analytic
results. In MacKay’s approach, it appears that
the optimal number of hidden nodes can be ad-
dressed by the so-called ‘‘evidence framework’’;
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it has been conjectured that the maximum of the
evidence approximately marks the number of hid-
den nodes at which overfitting occurs (MacKay
1996; Bishop 1996). If so, then one may use both
the training set and the validation set as a single
training set. A test set will still be necessary for
gauging the performance of the network; the per-
formance issue will not be addressed here. In the
next section, this conjecture will be supported by
means of a simulated data set, and then applied
to a realistic classification problem.

For a classification problem, the error function
is given by cross-entropy:�d���_��  ¡(¢�£j¤2¥+¦q§i¨ª©¬«]�­¦ � �Y¡�«+¢�£j¤.¦ � �®¥Q¦g§v¨q©¬«�«9¯`¨
where

§
is the vector of inputs,

©
is the vector of

the weights, and
¡

is the target value that is to be
produced by the output

¥+¦q§i¨ª©¬«
. The summation

is over the number of cases in the relevant data
set. In the 2-group case, with a single (binary)
output node representing group membership, for
this error function to be consistent it is important
for the activation function to be the logistic activa-
tion function ° ¦q§�«D� �0± ¦ �2²�³ §j´µ¦`�h§�«�«

. The output
can then be interpreted as the posterior proba-
bility of group-membership, given the inputs (if a
global minimum has been reached), and learning
can then be thought of as inferring the weights,

©
,

given some data, D. In other words, in the learn-
ing phase a quantity of interest is the probability¶ ¦�©¸· ¹w¨Zº»¨�¼	«

, where
º

is a hyperparameter in the
model

¼
. By Bayes’ theorem¶ ¦}©½· ¹w¨Zº¬¨Z¼	«i� ¶ ¦q¹¾· ©h¨Z¼	« ¶ ¦�©½· º»¨Z¼	«¶ ¦g¹¾· º»¨Z¼	« ¨

where ¶ ¦g¹¾· ©h¨�¼	«]¿ ³ §j´µÀHÁ�¨
and ¶ ¦}©½· º»¨�¼	«v¿ ³ §j´ ÀHÂ+ÁÄÃ ¨
where

�=ÅÆ�ÈÇÉ2Ê © É
is the weight-decay term.

These equations imply that the most likely
©

is
given by the maximum of

¶ ¦�©½· ¹w¨Zº»¨�¼	«
, or the

minimum of Ë ��� ² º]�=Å ,where Ë is defined by¶ ¦�©¸· ¹w¨Zº»¨�¼	«v� ³ §j´µ¦`� Ë « .
In the training phase, the

©
-independent part,¶ ¦q¹¾· º»¨Z¼	«

, is simply a normalization constant, but
it is the important quantity in inferring the value ofº

, because again by Bayes’ theorem¶ ¦qºD· ¹w¨Z¼	«i� ¶ ¦q¹¾· º»¨Z¼	« ¶ ¦qºD· ¼	«¶ ¦g¹¾· ¼	« Ì
The quantity

¶ ¦g¹¾· º»¨�¼	«
is called the evidence forº

(and
¼

). It is also possible to obtain an evidence
for
¼

by marginalization:¶ ¦g¹¾· ¼	«]��Í ¶ ¦g¹¾· º»¨Z¼	« ¶ ¦qºI· ¼	«=Î+º Ì
This quantity is believed to incorporate the Oc-
cam factor which favors the model with the low-
est complexity (MacKay 1996). Consequently,

its maximum is expected to correspond to the
minimum of generalization error. The computer
codes for the computation of these quantities are
available via ftp at 131.111.48.8 in the directory
pub/mackay/bigback. A few other codes that are
necessary for obtaining the results reported herein
were written by the author himself.

3. A CLASSIFICATION PROBLEM

A data set was generated with 2 independent
variables ranging from -1 to +1, and one depen-
dent variable whose 0/1 values label two groups.
This was done such that the decision bound-
ary between the two groups, i.e., the inverted
‘‘Mexican hat’’ with the filled circles in Figure 1,
corresponds to that of a network with 4 hidden
nodes. Indeed, prior to the addition of noise to the
data, a 4-hidden-node network would learn this
boundary with zero error. The addition of some
gaussian noise ( Ï �ÑÐ Ì�Ò ) produces the data ap-
pearing in Figure 1 with the lower-pointing filled
triangles representing one group and the upper-
pointing triangles representing the second group.
The training set contained 300 cases and the
validation set 200. The empty circles in Figures
1a-1c outline the decision boundaries produced by
several networks with different number of hidden
nodes whose weights and hyperparameters have
been inferred by Bayesian means. Evidently, the
network with 2 hidden nodes underfits the bound-
ary, while a network with 15 hidden nodes overfits
the boundary; in addition to the excessive mean-
dering of the neural net’s fit about the underlying
boundary, note the false boundaries at the top and
the bottom of Figure 1c as the network attempts
to create separate decision regions for two indi-
vidual data points. As expected, the network with
4 hidden nodes is optimal. (As mentioned above,
an additional virtue of the Bayesian approach is
the measure of confidence in the outputs that can
be calculated. The computation of this very im-
portant quantity, however, will be postponed to a
later time. The conclusions drawn here, therefore,
must be interpreted with care.)

This behavior can be quantified by consider-
ing the training errors and the validation errors for
each of the networks. Figure 2a displays the train-
ing and validation cross-entropy errors for a range
of number of hidden nodes. Evidently, as the
training error decreases with increasing number
of hidden nodes, the validation error decreases for
up to 4 hidden nodes and then begins to increase.
Again, as expected, the network with 4 hidden
nodes appears to be the optimal one.

Figure 2b displays the log of the evidence for
the same networks. As seen, the evidence and
the validation error behave similarly (oppositely)
even though the former is computed from the
training set alone. Therefore, it appears that the
conjecture stated above - that the maximum of
evidence marks the onset of overfitting - may
indeed be true. There are several other issues
that must be addressed before this conclusion
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can be stated with further certainty; some of these
issues will be addressed in the discussion section.

Another feature of the Bayesian method is
the ability to compute a quantity called saliency
which for the 
���
 hidden node is defined as

© É� ±�� ��� ,
where

�
is the Hessian

� �����­¢�£j¤ ¶ ¦�©¸· ¹w¨Zº»¨�¼	«
(MacKay 1996). This quantity gauges the ‘‘activ-
ity’’ of each hidden node. For instance, if in the
present classification problem an extravagant re-
searcher were to place, say, 30 hidden nodes in
the network, then by computing the saliency of
each hidden node, she would quickly note that
mostly 4 of the hidden nodes are in fact active
(Figure 3) - again the correct answer, since the
boundary was designed to be represented by a
network with 4 hidden nodes.

4. TORNADOS

Having shown that the evidence framework
appears to yield the optimal number of hidden
nodes, we can proceed to apply this method to
a realistic data set. The National Severe Storms
Laboratory has developed a number of algorithms
for the diagnosis of circulations that have the po-
tential of becoming tornadic. Neural networks
have been developed for the diagnosis of tornadic
circulations forming from mesocyclones (Marzban
and Stumpf 1995, 1997; Marzban, Paik, and
Stumpf 1997), and the performance of these net-
works has been gauged in terms of a number of
performance measures (Marzban 1997). There
exist, however, circulations that do not meet the
characteristics of mesocyclones, and there exists
an algorithm for the identification of such circula-
tions (Mitchell, et al. 1997). That algorithm pro-
duces 21 attributes derived from Doppler radar,
but for visual purposes only 3 will be employed
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here as inputs to the network; they are the base,
depth and the low-level gate-to-gate velocity dif-
ference of the circulations detected. These quan-
tities were transformed to z-scores for training
purposes. The target values are 0 or 1, depend-
ing on whether or not a tornado really does exist
corresponding to the input values.

A number of networks with different number
of hidden nodes were trained with �V�}� (5791) circu-
lations (with the prior probability of tornados being
0.09), and the evidence was computed for each
network. The results are shown in Figure 4. It
appears that the optimal number of hidden nodes
is 2. Such a network represents a decision bound-
ary that is approximately plainer. A 3-dimensional
plot of this boundary is shown in Figure 5. Note
that the boundary surface is parallel to the second
variable for large values of that variable, and is
almost perpendicular to it for small values. This
implies that this variable (i.e., depth) is a good pre-
dictor of tornados when it is small, but it is a poor
predictor of tornados when it is large. An example
of a boundary surface that overfits the data is pro-
vided by a network with 8 hidden nodes (Figure
6); note that this boundary is in fact composed of
two disconnected pieces.

5. CONCLUSIONS

Some empirical evidence is presented in sup-
port of the ‘‘evidence approach’’ to Bayesian in-
ference, i.e., that the maximum of the evidence
appears to mark the onset of overfitting, and as
such there is no need for a validation data set.
In particular, the evidence framework appears to
allow for the identification of the optimal number of
hidden nodes with only one data set. Additionally,
the application of this methodology to a realis-
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tic problem involving tornado prediction suggests
that the decision surface underlying the problem is
approximately plainer. The orientation of the plain
indicates that depth is a good (poor) predictor of
tornados when it is small (large).

6. DISCUSSION

The findings in this report are preliminary and
should be interpreted with care because a few
contingencies have not been taken into account!
For instance, in establishing the connection be-
tween generalization and evidence, it is important
to
! acknowledge that the two measure different

quantities, and so the connection may not be
exact,

! note that both are prone to errors (the
Hessian is difficult to compute and this can
adversely affect the evidence),

! repeat the entire procedure from a different
set of initial weights in order to account for
different local minima,

! consider several different partitions of the
data set into training and validation sets, and
then average over the outcomes,

! examine different measures of performance
in addition to cross-entropy.

There exist other contingencies as well, but they
will be addressed elsewhere.
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