

For CaCO₃(s):
$$\{Ca^{2+}\} = \frac{K_{s0}}{\{CO_3^{2-}\}}$$

 $\log\{Ca^{2+}\} = \log K_{s0} - \log\{CO_3^{2-}\}$
For $Ca_5OH(PO_4)_3(s)$: $\{Ca^{2+}\} = \left(\frac{K_{s0}}{\{OH^-\}\{PO_4^{-3-}\}^3}\right)^{1/5}$
 $\log\{Ca^{2+}\} = \frac{1}{5}(\log K_{s0} - \log\{OH^-\} - 3\log\{PO_4^{-3-}\})^{1/5}$

(b) Which solid	will precipitate first? At what pH?
At any pH, the	Ca ²⁺ concentration required for
Ca ₅ OH(PO ₄)	(s) precipitation is less than that for
CaCO ₃ (s) pre precipitate fi	ecipitation, so $Ca_5OH(PO_4)_3(s)$ will irst.
To find trajecto added, deve dose, assun results agai assumption assumption precipitation	pries of pH and (Ca ²⁺) as a function of limplop a titration curve showing pH vs. limpling that no solid precipitates. Then check inst K_{s0} for Ca ₅ OH(PO ₄) ₃ (s) to see if the applies. Lowest lime dose where the fails indicates the condition of initial.

	H ₂ O	H⁺	CO32-	PO ₄ ³⁻	Ca ²⁺
H₂O	1	0	0	0	0
H⁺	0	1	0	0	0
CO32-	0	0	1	0	0
PO ₄ ³⁻	0	0	0	1	0
Ca ²⁺	0	0	0	0	1
OH-	1	-1	0	0	0
HCO3-	0	1	1	0	0
H ₂ CO ₃	1	2	1	0	0
HPO42-	2	1	0	1	0
H ₂ PO ₄ -	3	2	0	1	0
H ₃ PO ₄	4	3	0	1	0
$\mathbf{H}_{eq} = \left[\mathbf{H}^+\right]$	eq −[O +3[H	\mathbf{H}^{-} $_{eq}$	+2[H]	$_{2}\text{CO}_{3}]_{e}$ $\text{H}_{2}\text{PO}_{4}^{2}$	$_{q} + \left[H \right]_{eq} + \left[H \right]_{eq}$

All terms contributing to TOTH _{eq} can be expressed as known values or values that depend only on pH _{eq} :
$TOTH_{eq} = \left[H^{+}\right]_{eq} - \left[OH^{-}\right]_{eq} + 2\left[H_{2}CO_{3}\right]_{eq} + \left[HCO_{3}^{-}\right]_{eq} + 3\left[H_{3}PO_{4}\right]_{eq} + 2\left[H_{2}PO_{4}^{2-}\right]_{eq} + \left[HPO_{4}^{2-}\right]_{eq} \right]_{eq}$
$TOTH_{eq} = \left[H^{+}\right]_{eq} - \frac{K_{w}}{\left[H^{+}\right]_{eq}} + \left(2\alpha_{0,CO_{3}} + \alpha_{1,CO_{3}}\right)\left[TOTCO_{3}\right] + \left(3\alpha_{0,PO_{4}} + 2\alpha_{1,PO_{4}} + \alpha_{2,PO_{4}}\right)\left[TOTPO_{4}\right]$

TOTH_{in} for a given lime dose equals TOTH of the constituents present initially (before any lime addition, when pH = 8.1), plus TOTH added with the lime. So, the 'input' portion of the tableau is as follows, where all α values are computed at pH 8.1

	H ₂ O	H⁺	CO32-	PO43-	Ca ²⁺	C _{in}
H⁺	0	1	0	0	0	10 ^{-8.1}
CO32-	0	0	1	0	0	$\alpha_{2,CO3}TOTCO_3$
PO ₄ ³⁻	0	0	0	1	0	$\alpha_{3,PO4}TOTPO_4$
OH-	1	-1	0	0	0	10 ^{-5.9}
HCO3-	0	1	1	0	0	$\alpha_{1,CO3}TOTCO_3$
H ₂ CO ₃	0	2	1	0	0	$\alpha_{0,CO3}TOTCO_3$
HPO42-	0	1	0	1	0	α _{2,PO4} <i>ΤΟΤ</i> ΡΟ ₄
H ₂ PO ₄ ⁻	0	2	0	1	0	$\alpha_{1,PO4}TOTPO_4$
H ₃ PO ₄	0	3	0	1	0	$\alpha_{0,PO4}TOTPO_4$
Ca(OH) ₂	2	-2	0	0	1	x

$$TOTH_{in} = \begin{cases} \left[H^{+}\right] - \left[OH^{-}\right] + 2\alpha_{0,CO_{3}}\left[TOTCO_{3}\right] + \alpha_{2,CO_{3}}\left[TOTCO_{3}\right] \\ + 3\alpha_{0,PO_{4}}\left[TOTPO_{4}\right] + 2\alpha_{1,PO_{4}}\left[TOTPO_{4}\right] + \alpha_{2,PO_{4}}\left[TOTPO_{4}\right] \end{cases} \right]_{pH 8.1} - 2x \\ TOTH_{in} = 10^{-8.1} - 10^{-5.9} + \left(2\alpha_{0,CO_{3}} + \alpha_{1,CO_{3}}\right)_{pH 8.1}\left[TOTCO_{3}\right] \\ + \left(3\alpha_{0,PO_{4}} + 2\alpha_{1,PO_{4}} + \alpha_{2,PO_{4}}\right)_{pH 8.1}\left[TOTPO_{4}\right] - 2x \end{cases}$$

pH of initial precipitation is found by solving TOTH equation (TOTH_{in} = TOTH_{ed}) for various lime doses (various values of x) and determining the minimum dose that causes K_{s0} to be exceeded. $TOTH_{in} = TOTH_{eq}$ $10^{-8.1} - 10^{-5.9} + (2\alpha_{0,CO_3} + \alpha_{1,CO_3})_{pH 8.1} [TOTCO_3]$ $+ (3\alpha_{0,PO_4} + 2\alpha_{1,PO_4} + \alpha_{2,PO_4})_{pH 8.1} [TOTPO_4] - 2x$ $= [H^+] - [OH^-] + 2[H_2CO_3] + [HCO_3^-] + 3[H_3PO_4]$ $+ 2[H_2PO_4^{2-}] + [HPO_4^{2-}]$

(c) How much lime must be added to reach the target condition, and what is the solution composition?
The TOTPO₄ target will be reached before CaCO₃(s) becomes saturated.
The lime dose and pH when the target is reached can be determined from another TOTH equation that includes the contribution of the solid to TOTH_{eq}. For the given choice of components, the TOTH coefficient for the solid is –1:
5Ca²⁺ + H₂O - H⁺ + 3PO₄ ↔ Ca₅OH(PO₄)₃(s)

 $TOTH_{in} = TOTH_{eq,w/pptn}$ $10^{-8.1} - 10^{-5.9} + (\alpha_{0,CO_3} - \alpha_{2,CO_3})_{pH 8.1} [TOTCO_3]$ $+ (2\alpha_{0,PO_4} + \alpha_{1,PO_4} - \alpha_{3,PO_4})_{pH 8.1} [TOTPO_4] - 2x$ $= [H^+] - [OH^-] + 2[H_2CO_3] + [HCO_3^-] + 3[H_3PO_4]$ $+ 2[H_2PO_4^{2-}] + [HPO_4^{2-}] - [Ca_5OH(PO_4)_3(s)]$ The concentration of solid can be replaced by TOTPO_{4,in} - TOTPO_{4,eqr} leaving an equation in which all terms except x

are known or depend only on pH. pH and solid concentration can then be determined for any lime dose, and the lime dose required to meet the treatment goal (95% TOTPO₄ removal) and the corresponding pH can be determined.

mass balances.

Modeling Solid/Liquid Equilibrium in Visual Minteq

Stoichiometry and log K values for inputting solids

- Specifying whether the solution is forced to be in equilibrium with the solid, or whether the solution can be undersaturated
- Determining how much solid precipitates, if the inputs cause the solution to be supersaturated

Modeling Solid/Liquid Equilibrium in Visual Minteq

Stoichiometry and log K values for inputting solids

In Visual Minteq, the stoichiometry for forming solids follows the same convention as for forming other species, i.e., based on a reaction in which the solid is a product and all other reactants and products are components:

 Σ Components \leftrightarrow 1 Species

e.g.: $Cd^{2+} + 2H_2O - 2H^+ \leftrightarrow Cd(OH)_2(s)$

 $(OH)_2(s)$ $K = 1/*K_{s0}$

However, (for no apparent reason,) the input log K value is for the <u>reverse of this reaction</u>; e.g., for the above example reaction, the input equilibrium constant would be

 $K_{VM} = 1/K = *K_{s0}; \log K_{VM} = \log (*K_{s0})$

Specifying whether the solution is forced to be in equilibrium with the solid, or whether the solution can be undersaturated

- The input option to specify the presence of an infinite amount of the solid assures that the solution will be in equilibrium with the solid; the program adds or removes the components of the solid to the solution in the appropriate stoichiometric ratio until the solution is saturated with the solid
- Alternatively, specifying the presence of a fixed amount of solid (including zero, if appropriate) in the initial system allows the solid to be present at equilibrium, but only if the inputs support that outcome (i.e., if the solution would be supersaturated in the absence of the solid)

Determining how much solid precipitates, if the inputs cause the solution to be supersaturated

As for other, similar situations, the concentration of solids formed (mol/L) can be computed based on the difference between the total input of metal and the total dissolved metal in the equilibrated solution.

TOTMe_{solid} = TOTMe_{input} - TOTMe_{diss,eq}

The discussion of the calculations in the preceding example explained how the problem could be answered using a manual approach, but the use of Visual Minteq greatly simplifies all the calculations. The graphs shown were all generated using Visual Minteq simulations.

- 1. Compute TOTH needed for initial pH (Result: 2.042e–3)
- 2. Titrate to change TOTCa and TOTH in ratio of 1:-2 (best to carry out titration in two steps, one for small lime doses, one for larger doses)
- 3. Find minimum TOTCa where a solid forms