

- Example: Waters A (pH 9.50) and B (pH 7.30) are both in equilibrium with the atmosphere and are then mixed 1:1 without gas exchange. CO_3 species control pH.
- (a) What are TOTCO₃, Alk, and TOTH of each solution and of the mixture? Use CO₃²⁻ as a component for computing TOTH.
- (b) What are the pH and the composition of the mixture?
- (c) How much and in what direction is CO₂ exchange as the mixture equilibrates with the atmosphere?

(a) What are TOTCO₃, Alk, and TOTH of each solution and of the mixture? Use CO₂²⁻ as a component for computing TOTH.

	(H+)	(OH⁻)	(H ₂ CO ₃)	(HCO ₃ ⁻)	(CO ₃ ^{2–})
A	10-9.50	10-4.50	1.29x10 ⁻⁵	1.82x10 ⁻²	2.70x10 ⁻³
В	10 ^{-7.30}	10 ^{-6.70}	1.29x10 ⁻⁵	1.15x10 ⁻⁴	1.07x10 ⁻⁷

TOTCO₃, Alk, and TOTH are all conservative quantities, so their values in the mixture are just weighted averages of their values in the two solutions.

	<i>TOT</i> CO ₃	Alk (meq/L)	<i>тот</i> н
А	2.09x10 ⁻²	23.6	1.82x10 ⁻²
В	1.28x10 ⁻⁴	0.115	1.40x10 ⁻⁴
Mix	1.05x10 ⁻²	1.19x10 ⁻²	9.16x10 ⁻³

Equilibrium composition of the original solutions and
the mixture before any CO ₂ exchange

	<i>TOT</i> CO ₃	Alk (meq/L)	<i>тот</i> н
А	2.09x10 ⁻²	23.6	1.82x10 ⁻²
В	1.28x10 ⁻⁴	0.115	1.40x10 ⁻⁴
Mix	1.05x10 ⁻²	1.19x10 ⁻²	9.16x10 ⁻³

	(H+)	(OH⁻)	(H ₂ CO ₃)	(HCO ₃ ⁻)	(CO ₃ ^{2–})
А	10-9.50	10-4.50	1.29x10 ⁻⁵	1.82x10 ⁻²	2.70x10 ⁻³
В	10-7.30	10-6.70	1.29x10⁻⁵	1.15x10 ⁻⁴	1.07x10 ⁻⁷
Mix	10-9.49	10-4.51	6.71x10 ⁻⁶	9.18x10 ⁻³	1.32x10 ⁻³

- (c) How much and in what direction is CO₂ exchange as the mixture equilibrates with the atmosphere?
- We know the 'initial' solution composition (after mixing, but before equilibration with the atmosphere).
- We don't know how much CO_2 exchange occurs, so we analyze the system using H_2CO_3 as a component. In that case, CO_2 exchange does not affect TOTH. We can therefore compute TOTH_{in} and assign that value to TOTH_{ea}.

		H ₂ O	H⁺	H ₂ CO ₃	Conc'n	
	H₂O	1	0	0		
	H⁺	0	1	0		
	H ₂ CO ₃	0	0	1	1.29x10 ⁻⁵	
	OH-	1	-1	0		
	HCO ₃ -	0	-1	1		
	CO32-	0	-2	1		
	Inputs					
	H⁺	0	1	0	10 ^{-9.49}	
	OH-	1	-1	0	10 -4.51	
	H ₂ CO ₃	0	0	1	6.71x10 ⁻⁶	
	HCO ₃ -	0	-1	1	9.18x10 ⁻³	
	CO32-	0	-2	1	1.32x10 ⁻³	
$TH_{in} = (1)$ = -1)(10 ^{–9.4§} Ⅰ.19x10	⁹) + (-1)(₋₂	10 ^{-4.51}) + (-1)(9	9.18x10 ⁻³)	+ (-2)(1.32x

Like other species, input parame species are stoichiometry and log species from components	ters for gaseous g K for forming the
$2 \operatorname{H}^{+} + \operatorname{CO}_{3}^{2-} \rightleftharpoons \operatorname{CO}_{2}(g) + \operatorname{H}_{2}O$	<i>K</i> = ??
$2 \mathrm{H}^{+} + \mathrm{CO}_{3}^{2-} \rightleftharpoons \mathrm{H}_{2}\mathrm{CO}_{3}$	$K = 10^{+16.68}$
$H_2CO_3 \rightleftharpoons CO_2(g) + H_2O$	$K = H = 10^{+1.47}$
$2 \text{ H}^+ + \text{CO}_3^{2-} \rightleftharpoons \text{CO}_2(g) + \text{H}_2\text{O}$	$K = 10^{+16.68} 10^{+1.47} = 10^{18}$

<i>Output: Equilibrium Species at pH 7.3 (all calculations at I =0)</i>							
pH	7.300	Sum of cation	is (eq/kg) 5.0119E-08				
Ionic strength	0.00e+00	Sum of anion	s (eq/kg) 1.1517E-04				
		Charge diffe	rence (%) 99 913006				
concentrations an		or aqueous morganic spe					
		Concentration	Activity	Log activity			
CI-1		Concentration 1.0000E-16	Activity 1.0000E-16	Log activity -16.000			
Cl-1 CO3-2		Concentration 1.0000E-16 1.0735E-07	Activity 1.0000E-16 1.0735E-07	Log activity -16.000 -6.969			
Cl-1 CO3-2 H+1		Concentration 1.0000E-16 1.0735E-07 5.0119E-08	Activity 1.0000E-16 1.0735E-07 5.0119E-08	Log activity -16.000 -6.969 -7.300			
Cl-1 CO3-2 H+1 H2CO3* (aq)		Concentration 1.0000E-16 1.0735E-07 5.0119E-08 1.2936E-05	Activity 1.0000E-16 1.0735E-07 5.0119E-08 1.2936E-05	Log activity -16.000 -6.969 -7.300 -4.888			
Cl-1 CO3-2 H+1 H2CO3* (aq) HCO3- Cl-1		Concentration 1.0000E-16 1.0735E-07 5.0119E-08 1.2936E-05 1.1476E-04 0.0004E-67	Activity 1.0000E-16 1.0735E-07 5.0119E-08 1.2936E-05 1.1476E-04 0.0001E-07	Log activity -16,000 -6,969 -7,300 -4,888 -3,340 -0.05			
CI-1 CO3-2 H+1 H2CO3* (aq) HCO3- OH-		Concentration 1.000E-16 1.0735E-07 5.0119E-08 1.2936E-05 1.1476E-04 2.0091E-07	Activity 1.0000E-16 1.0735E-07 5.0119E-08 1.2336E-05 1.1476E-04 2.0091E-07	Log activity -16.000 -6.969 -7.300 -4.888 -3.340 -6.697			
Cl-1 CO3-2 H+1 H2CO3* (aq) HCO3- OH-		Concentration 1.0000E-16 1.0735E-07 5.0119E-08 1.2936E-05 1.1476E-04 2.0091E-07	Activity 1.0000E-16 1.0735E-07 5.0119E-08 1.2936E-05 1.1476E-04 2.0091E-07	Log activity -16.000 -6.969 -7.300 -4.888 -3.940 -6.697			
C-1 C03-2 H+1 H2C03" (aq) HC03- OH-		Concentration 1.0006:16 1.07356:07 5.01196:08 1.2356:05 1.1478:604 2.00916:07 Component	Activity 1.0000E-16 1.0735E-07 5.0119E-08 1.2936E-05 1.1476E-04 2.0091E-07 Total dissolved	Log activity - 1-6.000 - 5-969 - 7.300 - 4.888 - 3.940 - 5.697			
CI-1 CO3-2 H+1 H2CO3* (aq) HCO3- OH-		Concentration 1.0006-16 1.07356-07 5.0119E-08 1.2395E-05 1.1476E-04 2.0091E-07 Component DI-1	Activity 1.0000E-16 1.0735E-07 5.0119E-08 1.2335E-05 1.1476E-04 2.0091E-07 Total dissolved 1.0000E-16	Log activity -16.000 -6.969 -7.300 -4.888 -3.940 -6.697			
CI-1 CO3-2 H+1 H2CO3* (aq) HCO3- OH-		Concentration 1.000E-16 1.0735E-07 5.0119E-08 1.2395E-05 1.1475E-04 2.0091E-07 Component 2-1 2-1 203-2	Activity 1.000E-16 1.0735E-07 5.0119E-08 1.2936E-05 1.1476E-04 2.0091E-07 Total dissolved 1.0000E-16 1.2780E-04 1.2780E-04	Log activity -16.000 -6.963 -7.300 -4.888 -3.940 -6.697			

Output: Equilibrium Species at pH 9.5 (all calculations at I =0)							
pH	9.500	Sum of cation	s (eq/kg) 3.1623E-	10			
ionic strength	0.00e+00	Sum of anion	s (eq/kg) 2.3613E-	02			
		Charge diffe	rence (%) 99.99999	7			
Concentrations and	d activities	of aqueous inorganic spe	cies (mol / I)	Print to Excel	Gases		
		Concentration	Activity	Lo	g activity		
Cl-1		1.0000E-16	1.0000E-16		16.000		
CO3-2		2.6964E-03	2.6964E-03		-2.569		
H+1		3.1623E-10	3.1623E-10		-9.500		
H2CO3* (aq)		1.2936E-05	1.2936E-05		-4.888		
HCO3-		1.8188E-02	1.8188E-02		-1.740		
OH-		3.1842E-05	3.1842E-05		-4.497		
		Component Cl-1 CO3-2	Total dissolved 1.0000E-16 2.0897E-02				
		H+1	1.8182E-02	1			

Visual Minteq Input and Output for Mixture Prior to Equilibration with Atmospheric CO₂

In	n	+	
	U	л	
	\sim		

 pH
 calculated by mass balance, no Fixed species

 TOTAL CO3(2-)
 (1.278e-4 + 2.090e-2)/2 = 1.0511e-2

 TOTAL H(+)
 (1.4048e-4 + 1.8182e-2)/2 = 9.1612e-3

Δ	4	n	14	
U	ш	μι	л	

pH 9.495 H₂CO₃ 6.71e-6 (undersaturated, CO₂ will dissolve)

Visual Minteq Input and Output for Mixture after Equilibration with Atmosphere

Input		
pH calculate	ed by mass balance	
CO2 as Fix	ed species, log $P(CO2) = -3.48$	
<i>тот</i> соз	1.0511e-2	
<i>тот</i> н	9.1612e-3	
Output		
pH 9.247		
<i>TOT</i> CO3:	1.1014e-2	
<i>TOT</i> H:	1.0168e-2	
Offline calcu	Ilations	
pH 9.247		
$\Delta TOTCO_3$	+5.00e-4	
∆ <i>ТОТ</i> Н	+1.07e-3	

What are metals?

How do metal ions interact with water molecules?

How do metal ions interact with other solutes?

What causes metals to precipitate or dissolve, and what solids are most stable in various conditions?

Aqueous Chemistry of Metals

What are metals?

When considering the solid state, metals are defined by the presence of highly mobile electrons, which make the metals electrically conductive

In aqueous systems, metals are cations that have a significant attraction for unshared electrons (e.g., those at two of the corners of the water tetrahedron)

Oxidation number or state

("di-, tri-, hexa-valent," etc.)

5

