Example. NaAc + 10 Initial solution component	hat ar 7 NaH (pri		and com h then ct with			ution atmo $\partial_{3}-a n$	de of heric c^{-}as
	$\mathrm{H}_{2} \mathrm{O}$	H^{+}	$\mathrm{HCO}_{3}{ }^{-}$	Ac^{-}	Na^{+}	$\log K$	Conc'n
$\mathrm{H}_{2} \mathrm{O}$	1	0	0	0	0	0.00	
\mathbf{H}^{+}	0	1	0	0	0	0.00	
$\mathrm{HCO}_{3}{ }^{-}$	0	0	1	0	0	0.00	
Ac^{-}	0	0	0	1	0	0.00	
Na^{+}	0	0	0	0	1	0.00	
OH^{-}	1	-1	0	0	0	-14.00	
HAc	0	1	0	1	0	4.74	
$\mathrm{H}_{2} \mathrm{CO}_{3}$	0	1	1	0	0	6.35	
$\mathrm{CO}_{3}{ }^{2-}$	0	-1	1	0	0	-10.33	
Inputs							
NaAc	0	0	0	1	1		$10^{-2.7}$
NaHCO_{3}	0	0	1	0	1		$10^{-3.7}$
$\begin{gathered} 0+0=\left(\mathrm{H}^{+}\right)_{\mathrm{eq}}+(\mathrm{HAc})_{\mathrm{eq}}+\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)_{\mathrm{eq}}-\left(\mathrm{OH}^{-}\right)_{\mathrm{eq}}-\left(\mathrm{CO}_{3}^{2-}\right)_{\mathrm{eq}} \\ \left(\mathrm{H}^{+}\right)+(\mathrm{HAc})+\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)=\left(\mathrm{OH}^{-}\right)+\left(\mathrm{CO}_{3}^{2-}\right) \end{gathered}$							

Initial Solution Composition

$$
\left(\mathrm{H}^{+}\right)+(\mathrm{HAc})+\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)=\left(\mathrm{OH}^{-}\right)+\left(\mathrm{CO}_{3}^{2-}\right)
$$

$10^{-2.7} \mathrm{NaAc}+10^{-3.7} \mathrm{NaHCO}_{3}+$ equilibrium with atmospheric CO_{2} still using HCO_{3}^{-}and Ac^{-}as components

	$\mathrm{H}_{2} \mathrm{O}$	H^{+}	$\mathrm{HCO}_{3}{ }^{-}$	Ac-	Na^{+}	$\log K$	Conc'n
$\mathrm{H}_{2} \mathrm{O}$	1	0	0	0	0	0.00	
\mathbf{H}^{+}	0	1	0	0	0	0.00	
$\mathrm{HCO}_{3}{ }^{-}$	0	0	1	0	0	0.00	
Ac^{-}	0	0	0	1	0	0.00	
Na^{+}	0	0	0	0	1	0.00	
OH^{-}	1	-1	0	0	0	-14.00	
HAc	0	1	0	1	0	4.74	
$\mathrm{H}_{2} \mathrm{CO}_{3}$	0	1	1	0	0	6.35	1.29×10^{-5}
$\mathrm{CO}_{3}{ }^{2-}$	0	-1	1	0	0	-10.33	
Inputs							
NaAc	0	0	0	1	1		$10^{-2.7}$
NaHCO_{3}	0	0	1	0	1		$10^{-3.7}$
$\mathrm{H}_{2} \mathrm{CO}_{3}$	0	1	1	0	0		??

$0+0+1(? ?)=\left(\mathrm{H}^{+}\right)_{\mathrm{eq}}+(\mathrm{HAC})_{\mathrm{eq}}+\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)_{\mathrm{eq}}-\left(\mathrm{OH}^{-}\right)_{\mathrm{eq}}-\left(\mathrm{CO}_{3}^{2-}\right)_{\mathrm{eq}}$
$\left(\mathrm{H}^{+}\right)_{\mathrm{eq}}+(\mathrm{HAc})_{\mathrm{eq}}+\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)_{\mathrm{eq}}=\left(\mathrm{OH}^{-}\right)_{\mathrm{eq}}+\left(\mathrm{CO}_{3}^{2-}\right)_{\mathrm{eq}}+? ?$

Same system, but using $\mathrm{H}_{2} \mathrm{CO}_{3}$ and Ac^{-}as components

	$\mathrm{H}_{2} \mathrm{O}$	\mathbf{H}^{+}	$\mathrm{H}_{2} \mathrm{CO}_{3}$	Ac^{-}	Na^{+}	$\log K$	Conc'n
$\mathrm{H}_{2} \mathrm{O}$	1	0	0	0	0	0.00	
\mathbf{H}^{+}	0	1	0	0	0	0.00	
$\mathrm{H}_{2} \mathrm{CO}_{3}$	0	0	1	0	0	0.00	1.29×10^{-5}
Ac^{-}	0	0	0	1	0	0.00	
Na^{+}	0	0	0	0	1	0.00	
OH^{-}	1	-1	0	0	0	-14.00	
HAc	0	1	0	1	0	4.74	
$\mathrm{HCO}_{3}{ }^{-}$	0	-1	1	0	0	-6.35	
$\mathrm{CO}_{3}{ }^{\text {2- }}$	0	-2	1	0	0	-16.68	
Inputs							
NaAc	0	0	0	1	1		$10^{-2.7}$
NaHCO_{3}	0	-1	1	0	1		$10^{-3.7}$
$\mathrm{H}_{2} \mathrm{CO}_{3}$	0	0	1	0	0		?

$$
\begin{gathered}
0+(-1) 10^{-3.7}+0=\left(\mathrm{H}^{+}\right)+(\mathrm{HAc})-\left(\mathrm{OH}^{-}\right)-\left(\mathrm{HCO}_{3}^{-}\right)-2\left(\mathrm{CO}_{3}^{2-}\right) \\
\left(\mathrm{H}^{+}\right)+(\mathrm{HAc})+10^{-3.7}=\left(\mathrm{OH}^{-}\right)+\left(\mathrm{HCO}_{3}^{-}\right)+2\left(\mathrm{CO}_{3}^{2-}\right)
\end{gathered}
$$

Gas-Liquid Equilibrium

After equilibration with atmosphere, using $\mathrm{H}_{2} \mathrm{CO}_{3}$ as component

Gas-Liquid Equilibrium

Gas-Liquid Equilibrium

- At initial condition, $\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right) \approx 10^{-5.4}$, so solution was undersaturated, and CO_{2} dissolved when the solution equilibrated with the atmosphere
neutral volatile species (e. CO) the conjugate bas $\left(\mathrm{HCO}_{3}^{-}\right)$is converted to the acid, causing the acid to become supersaturated and evolve out of solution. If a base is added, the opposite reaction occurs, and the gaseous acid dissolves. If the dissolved neutral volatile species is a base (e.g., NH_{3}), the reverse occurs.
- Amount of CO_{2} that dissolved can be computed as
- In any of the above scenarios (acid or base added, acidic or basic volatile species), the net effect is that gas transfer partially counteracts acid or base addition. Therefore, the dissolved volatile species acts as a buffer.
- If the amount of a species that enters or leaves solution is unknown, that uncertainty can be circumvented by choosing the species as a component in the TOTH equation
- The buffer intensity depends on the details of H and pH , which establish how much gas transfer occurs for a given change in pH

Gas-Liquid Equilibrium

- Alkalinity contributions by acidic or basic gases
- Adding a weak base via gas dissolution is no different from adding it in some other way
- $\mathrm{H}_{2} \mathrm{CO}_{3}$ addition or removal from solution has no effect on Alk, so dissolution or evolution of CO_{2} also has no effect on Alk. Note that this result is independent of the solution pH (The contribution of a species to pH always depends on the composition of what is added and the composition at the Alk endpoint, not on the speciation at intermediate times.)

