Gas-Liquid Equilibrium

- Reaction and Equilibrium Constant Expression

Dissolved volatile species \leftrightarrow Gaseous volatile species

$$
K_{L \rightarrow G}=\frac{\{X(g)\}}{\{X(a q)\}}=\frac{\gamma_{X(g)}\left(c_{X(g)} / c_{X(g), \text { std.state }}\right)}{\gamma_{X(a q)}\left(c_{X(a q)} / c_{X(a q), \text { std.state }}\right)}
$$

- $\gamma_{x(g)} \approx 1.0$ because gases behave ideally
- $\gamma_{X(a q)} \approx 1.0$ because volatile species are uncharged

Gas-Liquid Equilibrium

- For major gaseous species, $c_{X(g)}$ typically expressed as P_{X}, and $c_{X(g) \text { std.state }}$ is 1.0 atm

$$
K_{L \rightarrow G}=\frac{(1.0) P_{X(g)} /(1 \mathrm{~atm})}{(1.0) c_{X(a q)} /(1 \mathrm{~mol} / \mathrm{L})}=\frac{P_{X(g)}(\mathrm{atm})}{c_{X(a q)}(\mathrm{mol} / \mathrm{L})}
$$

- For minor species, $c_{X(q)}$ and $c_{X(a q)}$ often both expressed in same mass/volume units (e.g., mg/L or $\mu \mathrm{g} / \mathrm{L}$), and $c_{X(g), \text { std.state }}$ and $c_{X(a q), \text { std.state }}$ are 1.0 of same units

$$
K_{L \rightarrow G}=\frac{(1.0) c_{X(g)} /(1 \mathrm{mg} / \mathrm{L})}{(1.0) c_{X(a q)} /(1 \mathrm{mg} / \mathrm{L})}=\frac{c_{X(g)}}{c_{X(a q)}}
$$

Gas-Liquid Equilibrium

$$
c_{X(a q)}=\frac{P_{X(g)}}{H}
$$

- For equilibrium between a limited amount of gas and a limited amount of liquid, $P_{X(g)}$ decreases as $c_{X(a q)}$ increases; equilibrium is reached when K_{H} is satisfied.
- For equilibrium with an effectively infinite gas phase (e.g., the atmosphere), $P_{X(q)}$ remains constant when $c_{X(a q)}$ changes; equilibrium is reached when $c_{X(a q)}$ reaches a specified value.

$$
c_{X(a q)}=\frac{P_{X(g)}}{H}=\text { constant }
$$

Gas-Liquid Equilibrium

- For equilibrium at $20^{\circ} \mathrm{C}$ with the atmosphere:

$$
\begin{gathered}
c_{\mathrm{N}_{2}(a q)}=\frac{P_{\mathrm{N}_{2}(g)}}{H_{\mathrm{N}_{2}}}=\frac{0.79 \mathrm{~atm}}{1560 \mathrm{~atm} /(\mathrm{mol} / \mathrm{L})}\left(\frac{28,000 \mathrm{mg}}{\mathrm{~mol}}\right)=14.2 \frac{\mathrm{mg}}{\mathrm{~L}} \\
c_{\mathrm{O}_{2}(a q)}=\frac{P_{\mathrm{O}_{2}(g)}}{H_{\mathrm{O}_{2}}}=\frac{0.21 \mathrm{~atm}}{790 \mathrm{~atm} /(\mathrm{mol} / \mathrm{L})}\left(\frac{32,000 \mathrm{mg}}{\mathrm{~mol}}\right)=8.5 \frac{\mathrm{mg}}{\mathrm{~L}} \\
c_{\mathrm{CO}_{2}(a q)}=\frac{P_{\mathrm{CO}_{2}(g)}}{H_{\mathrm{CO}_{2}}}=\frac{10^{-3.5} \mathrm{~atm}}{30.2 \mathrm{~atm} /(\mathrm{mol} / \mathrm{L})}=1.05 \times 10^{-5} \frac{\mathrm{~mol}}{\mathrm{~L}}
\end{gathered}
$$

Gas-Liquid Equilibrium

- For equilibrium at $20^{\circ} \mathrm{C}$ with the atmosphere:

Gas-Liquid Equilibrium

- If the dissolved concentration of a volatile species is less than what would be in equilibrium with the existing partial pressure of that species in the gas phase, it will transfer from the gas to the solution (dissolve); if the dissolved concentration is greater than the value that would be in equilibrium with the partial pressure in the gas, the species will transfer out of solution (volatilize or evolve)
- Volatile species will volatilize passively (via diffusion across the interface) if the total partial pressure of all such species is less than the total pressure in the gas phase; gas bubbles will form in the liquid (e.g., fizzing of carbonated beverages or boiling of water) only if the total partial pressure of all dissolved species is greater than the total pressure on the solution

Gas-Liquid Equilibrium

- Equilibrium between and among dissolved species is unaffected by the fact that one of the species is equilibrated with the gas phase. In particular, K_{a} relationships must still be satisfied. But K_{H} must also be satisfied; e.g., for CO_{2} (or, equivalently $\mathrm{H}_{2} \mathrm{CO}_{3}$) in equilibrium with the atmosphere:

$$
\left.\begin{array}{c}
c_{\mathrm{CO}_{2}(a q)}=1.05 \times 10^{-5} \frac{\mathrm{~mol}}{\mathrm{~L}} \quad \mathrm{H}_{2} \mathrm{CO}_{3} \text { activity is independent of } \mathrm{pH} \\
\frac{\left(\mathrm{HCO}_{3}^{-}\right)\left(\mathrm{H}^{+}\right)}{\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)}=10^{-6.35} \\
\frac{\left(\mathrm{CO}_{3}^{2-}\right)\left(\mathrm{H}^{+}\right)}{\left(\mathrm{HCO}_{3}^{-}\right)}=10^{-10.33}
\end{array}\right\} \begin{aligned}
& \text { Acid and conjugate base have equal } \\
& \text { activity at } p \mathrm{H}=p K_{a} \text {; activity ratio of } \\
& \text { base to acid increases by 1 log unit } \\
& \text { per unit increase in pH }
\end{aligned}
$$

Gas-Liquid Equilibrium

Gas-Liquid Equilibrium

Gas-Liquid Equilibrium

- As pH is increased, $\mathrm{H}_{2} \mathrm{CO}_{3}$ is converted to $\mathrm{HCO}_{3}{ }^{-}$ and CO_{3}^{2-}, and more CO_{2} dissolves to maintain Henry's Law equilibrium. TOTCO_{3} therefore increases. Thus, in a system equilibrated with a gas containing $\mathrm{CO}_{2}, \mathrm{TOTCO}_{3}$ depends on pH , and we can't know TOTCO_{3} without knowing pH .

Example. What is the pH and composition of a solution of pure water in equilibrium with atmospheric CO_{2} ?

Unknowns: $\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right),\left(\mathrm{HCO}_{3}^{-}\right),\left(\mathrm{CO}_{3}^{2-}\right),\left(\mathrm{H}^{+}\right),\left(\mathrm{OH}^{-}\right)$
Equations: $K_{w}, K_{\mathrm{a} 1}, K_{\mathrm{a} 2}, \mathrm{CB}, H$
H replaces MB on TOTCO_{3}, since TOTCO_{3} is unknown

Gas-Liquid Equilibrium

- CB: $\left(\mathrm{H}^{+}\right)=\left(\mathrm{OH}^{-}\right)+\left(\mathrm{HCO}_{3}^{-}\right)+2\left(\mathrm{CO}_{3}^{2-}\right)$

Example. What are the pH and composition of a solution made of $10^{-2.7} \mathrm{NaAc}+10^{-3.7} \mathrm{NaHCO}_{3}$ which is then equilibrated with atmospheric CO_{2} ?

	$\mathrm{H}_{2} \mathrm{O}$	H^{+}	$\mathrm{HCO}_{3}{ }^{-}$	Ac-	Na^{+}	$\log K$	Conc'n
$\mathrm{H}_{2} \mathrm{O}$	1	0	0	0	0	0.00	
H^{+}	0	1	0	0	0	0.00	
$\mathrm{HCO}_{3}{ }^{-}$	0	0	1	0	0	0.00	1.29×10^{-5}
Ac	0	0	0	1	0	0.00	
Na^{+}	0	0	0	0	1	0.00	
OH^{-}	1	-1	0	0	0	-14.00	
HAc	0	1	0	1	0	4.74	
$\mathrm{H}_{2} \mathrm{CO}_{3}$	0	1	1	0	0	6.35	
$\mathrm{CO}_{3}{ }^{\text {- }}$	0	-1	1	0	0	-10.33	
Inputs							
NaAc	0	0	0	1	1		$10^{-2.7}$
NaHCO_{3}	0	0	1	0	1		$10^{-3.7}$
$\mathrm{H}_{2} \mathrm{CO}_{3}$	0	1	1	0	0		??

$\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)_{\mathrm{in}}=\left(\mathrm{H}^{+}\right)_{\mathrm{eq}}+(\mathrm{HAc})_{\mathrm{eq}}+\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)_{\mathrm{eq}}-\left(\mathrm{OH}^{-}\right)_{\mathrm{eq}}-\left(\mathrm{CO}_{3}{ }^{2-}\right)_{\mathrm{eq}}$ $\left(\mathrm{H}^{+}\right)+(\mathrm{HAc})+\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)=\left(\mathrm{OH}^{-}\right)+\left(\mathrm{CO}_{3}^{2-}\right)+1(? ?)$

