Acid/Base Titrations

- Note: Acid or base added in a titration is often expressed in equiv/L. 1 equiv is 1 mole of H^{+}or an amount of some other species that can provide (or, in the case of bases, consume) 1 mole of H^{+}.
- The fact that a species can provide or consume one H^{+} does not mean that it necessarily will do so under a given set of circumstances (specifically, at a given pH). Therefore, the basis for defining "equivalency" must be clearly stated to avoid confusion.
- Universally, $\mathrm{H}_{2} \mathrm{CO}_{3}$ and $\mathrm{CO}_{3}{ }^{2-}$ are treated as having 2 equiv/mol; for other species, the assignment is not always consistent or obvious.

Titration with a Weak Base

Acid/Base Titrations

- Titrations with weak acids or bases change the pH less than those with strong acids or bases, because they don't exchange all possible H^{+}and because they themselves must be titrated.
- The amount of strong acid or base needed to change pH from one value to another equals the difference in $T O T H$ of the solution at the two pH values, where TOTH can be computed using any consistent set of components.

Alkalinity and Acidity

- Generic descriptors of the capacity of the solution to acquire H^{+}or OH^{-}without reaching some limiting or undesirable condition, specified as a particular pH .
- For experimental measurements, pH endpoint for Alk titration is chosen to be 4.5 ± 0.2. Conceptually justified as the pH of a solution made by adding TOTCO_{3} to pure water, entirely as $\mathrm{H}_{2} \mathrm{CO}_{3}$.
- Alk frequently approximated as deriving entirely from $\mathrm{H}_{2} \mathrm{CO}_{3} / \mathrm{HCO}_{3}-/ \mathrm{CO}_{3}^{2-}$ and $\mathrm{H}^{+} / \mathrm{H}_{2} \mathrm{O} / \mathrm{OH}^{-}$groups. In reality all weak bases contribute to Alk, because all consume some H^{+}between initial condition and titration endpoint.
- Can be quantified as net proton excess at endpoint minus net proton excess prior to titration (i.e., TOTH $_{\text {endpt }}-$ $T O T \mathrm{H}_{\text {init }}$. Therefore, a conservative property.

Buffer Intensity

- Generic descriptor of the tendency of the solution to resist a pH change in response to addition of strong acid or base. Defined mathematically as:

$$
\beta=\frac{d\left[\mathrm{OH}^{-}\right]_{\text {added }}}{d \mathrm{pH}}=-\frac{d T O T \mathrm{H}}{d \mathrm{pH}}
$$

- Includes contributions required to:
$>$ increase $\left[\mathrm{OH}^{-}\right]$and decrease $\left[\mathrm{H}^{+}\right]$, defined as β_{w};
$>$ react with H^{+}released by weak acids, defined as β_{a}.
- Contributions of different acid/base groups are additive
- Analogous to heat capacity of a solution, which quantifies tendency to resist a temperature change

Temperature Buffering Intensity

