Numerical Solution of Acid/Base Problems

Example: How much NaOH must be added to a solution of $0.01 \mathrm{M} \mathrm{Na}_{2} \mathrm{HPO}_{4}+0.003 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$ to increase the pH to 10.0 , assuming all γ_{i} are 1.0?

- Species: ??
- Equilibrium constants
(a) ??
(b) ??
(c) ??
(d) ??
- Mass balances: ??
- Charge balance: ??

Numerical Solution of Acid/Base Problems

Example: NaOH required to adjust $0.01 \mathrm{M} \mathrm{Na}_{2} \mathrm{HPO}_{4}+$ $0.003 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$ to pH 10.0

- Species: $\mathrm{H}^{+}, \mathrm{OH}^{-}, \mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{H}_{2} \mathrm{PO}_{4}^{-}, \mathrm{HPO}_{4}{ }^{2-}, \mathrm{PO}_{4}{ }^{3-}, \mathrm{Na}^{+}$
- Equilibrium constants
(a) $K_{w}=10^{-14.0}$
(b) $K_{\mathrm{a} 1}=10^{-2.2}, K_{\mathrm{a} 2}=10^{-7.2}, K_{\mathrm{a} 3}=10^{-12.2}$
(c) N / A
(d) None
- Mass balances: TOTPO $_{4}=0.013=10^{-1.89}$, TOTNa=??
- Charge balance:
$\left[\mathrm{Na}^{+}\right]+\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]+\left[\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}\right]+2\left[\mathrm{HPO}_{4}{ }^{2-}\right]+3\left[\mathrm{PO}_{4}{ }^{3-}\right]$

Numerical Solution of Acid/Base Problems

TOTNa $+\left[\mathrm{H}^{+}\right]=\frac{K_{w}}{\left[\mathrm{H}^{+}\right]}+\alpha_{1}\left(\right.$ TOTPO $\left._{4}\right)+2 \alpha_{2}\left(\right.$ TOTPO $\left._{4}\right)+3 \alpha_{3}\left(\right.$ TOTPO $\left._{4}\right)$ TOTNa $=2\left[\mathrm{Na}_{2} \mathrm{HPO}_{4}\right]_{\text {added }}+[\mathrm{NaOH}]_{\text {added }}=[\mathrm{Na}]_{\text {init }}+[\mathrm{NaOH}]_{\text {added }}$
pH Na (init) H OH H2PO4 HPO4 PO4 Sum (+) Sum (-) Net charge
$\begin{array}{llllllllll}10 & 2.00 \mathrm{E}-02 & 1.00 \mathrm{E}-10 & 1.00 \mathrm{E}-04 & 2.04 \mathrm{E}-05 & 1.29 \mathrm{E}-02 & 8.14 \mathrm{E}-05 & 2.00 \mathrm{E}-02 & 2.62 \mathrm{E}-02 & -6.16 \mathrm{E}-03\end{array}$
The net charge must be zero, and the only term missing from the CB is $[\mathrm{NaOH}]_{\text {added }}$, so that term must be $6.16 \mathrm{E}-3 \mathrm{M}$.

Note: If we had not assumed ideal behavior of solutes, the mass and charge balances would be based on concentrations, whereas the equilibrium relationships would be based on activities.

Graphical Solution of Acid/Base Problems

Example: Speciation of $10^{-4.0} \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{3}+10^{-2.3} \mathrm{M} \mathrm{HAc}$

- Species: $\mathrm{H}^{+}, \mathrm{OH}^{-}, \mathrm{H}_{2} \mathrm{SO}_{3}, \mathrm{HSO}_{3}{ }^{-}, \mathrm{SO}_{3}{ }^{2-}, \mathrm{HAc}, \mathrm{Ac}^{-}$
- Equilibrium constants
(a) $K_{w}=10^{-14.0}$
(b) $K_{\mathrm{a} 1, \mathrm{~S}}=10^{-1.86}, K_{\mathrm{a} 2, \mathrm{~S}}=10^{-7.30}, K_{\mathrm{a}, \mathrm{Ac}}=10^{-4.76}$
(c) N / A
(d) None
- Mass balances: TOTSO $_{3}=10^{-4.0}$, TOTAc $=10^{-2.3}$
- Charge balance:

$$
\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]+\left[\mathrm{HSO}_{3}^{-}\right]+2\left[\mathrm{SO}_{3}{ }^{2-}\right]+\left[\mathrm{Ac}^{-}\right]
$$

Graphical Solution of Acid/Base Problems

Graphical Solution of Acid/Base Problems

Graphical Solution of Acid/Base Problems

Graphical Solution of Acid/Base Problems

Example: Speciation of $10^{-4.0} \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{3}+10^{-2.3} \mathrm{M} \mathrm{HAc}$

- Species: $\mathrm{H}^{+}, \mathrm{OH}^{-}, \mathrm{H}_{2} \mathrm{SO}_{3}, \mathrm{HSO}_{3}{ }^{-}, \mathrm{SO}_{3}{ }^{2-}, \mathrm{HAc}, \mathrm{Ac}^{-}$
- Equilibrium constants
(a) $K_{w}=10^{-14.0}$
(b) $K_{\mathrm{a} 1, \mathrm{~S}}=10^{-1.86}, K_{\mathrm{a} 2, \mathrm{~S}}=10^{-7.30}, K_{\mathrm{a}, \mathrm{Ac}}=10^{-4.76}$
(c) N / A
(d) None
- Mass balances: TOTSO $_{3}=10^{-4.0}$, TOTAc $=10^{-2.3}$
- Charge balance:
$\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]+\left[\mathrm{HSO}_{3}{ }^{-}\right]+2\left[\mathrm{SO}_{3}{ }^{2-}\right]+\left[\mathrm{Ac}^{-}\right]$

Graphical Solution of Acid/Base Problems

Graphical Solution of Acid/Base Problems

