
CEE 543 Autumn 2006 Final Exam 

1. A well water at pH 8.4 contains 4 mg/L TOTFe(II) and is thought to be in equilibrium 
with siderite (FeCO3(s)), with which it was in contact underground (no solids are in the 
water collected in the well). When the water is brought to the surface, it is aerated, 
thereby oxidizing essentially all of the Fe(II) to Fe(III) and causing precipitation of 
ferrihydrite. The aeration also equilibrates the solution with atmospheric CO2. Answer 
the following questions, assuming that the solution is ideal (activity coefficients all equal 
to 1.0) and considering all Fe(II)-OH and Fe(III)-OH complexes listed in Table 8.2 (and 
only those complexes). 

(a) What is the alkalinity of the untreated water? 

(b) Write a balanced redox reaction for oxidation of Fe2+ by dissolved oxygen to form 
ferrihydrite. 

(c) What is the alkalinity of the treated water (considering the dissolved species, but 
not the precipitated ferrihydrite)? 

(d) What is the composition of the treated water (pH and all Fe and CO3 species)? 

(e) How much CO2(g) was exchanged between the solution and the gas bubbles 
during the aeration step? 

 

Answer. (a) The alkalinity of the untreated water could have contributions from both 
CO3 and Fe(II) species. Therefore, to determine the alkalinity, we need to find the 
composition of the solution. The molar concentration of TOTFe(II) is: 

54 mg/L mol
Fe 7.143x10

56,000 mg/mol L
TOT    

The pKa’s for Fe2+ are 9.50, 11.07, and 10.43, respectively, so the only Fe-OH 
complex of significance at pH 8.4 is FeOH+. Assuming that the solutes behave 
ideally, the molar concentrations and activities of Fe2+ and FeOH+ are therefore: 
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The molar concentrations of the CO3 species can then be found from various 
equilibrium constant relationships: 
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Essentially all the FeOH+ is converted to Fe2+ during the alkalinity titration, so the 
alkalinity of the solution is: 
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(b) Each oxygen molecule combines with four electrons when it is reduced, whereas each 
Fe(II) ion releases one electron, so the stoichiometric ratio of Fe(II):O2 is 4:1. The 
stoichiometry of the remaining species in the reaction can be determined by the 
algorithm given in the text. The balanced equation for oxidation of Fe2+ is: 

4 Fe2+ + O2 + 10 H2O    4 Fe(OH)3(s) + 8 H+ 

(c) The treated water is generated by converting all the Fe(II) in the original solution to 
Fe(III) and equilibrating the solution with atmospheric CO2. The exchange of CO2 
has no effect on the alkalinity, so the only change of importance for determining the 
alkalinity of the treated solution is the oxidation of the Fe(II) species. Based on the 
calculations in part a and the assumption that all the Fe(III) is present as Fe(OH)3(s), 
the oxidation converts 6.617x105 mol/L Fe2+ and 5.256x106 mol/L FeOH+ to 
7.143x105 mol/L Fe(OH)3(s). Based on the reaction developed in part b, each mole 
of Fe2+ that is converted to Fe(OH)3(s) releases two moles of H+. Correspondingly, 
each mole of FeOH+ that is converted to the solid must release only one mole of H+. 
Each mole of H+ released reduces the alkalinity by one equivalent. Therefore, the 
change in alkalinity accompanying the oxidation reaction is: 
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The alkalinity of the treated water is therefore: 
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The alkalinity of the treated water is negative, meaning that base, not acid, is needed 
to titrate the solution to pH 4.7. 

(d) The result in part c indicates that 9.524x105 mol/L OH is needed to titrate the 
solution to pH 4.7. The pH of this solution can be determined by a charge balance. 
Since the solution pH is <4.7, we can ignore the contributions of OH, HCO3

, and 
CO3

2 to the charge balance (CB). Also, since we are assuming that all the Fe(III) is 
present as ferrihydrite, dissolved Fe(III) species do not contribute significantly to the 
CB. Therefore, the only ions we need to consider in a CB on the treated solution are 
H+ and any ions other than Fe and CO3 species that were present in the original 
solution. The net charge on the unknown ions in the original solution can be 
determined by a CB on that solution: 
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The original solution therefore contained a net charge of 1.005x104 mol/L 
associated with unspecified cations and anions. These species are not altered by the 
oxidation reaction, so the same net charge is present in the treated solution. The CB 
on the treated solution is therefore: 
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The composition of the solution can be determined from the pH and knowledge that 
the solution is in equilibrium with atmospheric CO2 and ferrihydrite: 
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As it turns out, the charge on Fe(III) species accounts for ~30% of the total cationic 
charge in the treated solution, so the assumption that these species could be ignored in 
the CB was not quite valid. Carrying out an iterative solution for the CB in which the 
charge on dissolved Fe(III) species is accounted for (not required as part of the 
problem) indicates that the equilibrium pH would actually be 4.09. 

(e) The amount of CO2 exchanged during the aeration step can be computed as the 
difference in TOTCO3 between the untreated and treated solutions. Based on the 
calculations in parts a and d, these values of TOTCO3 are 3.700x105 mol/L and 
1.152x105 mol/L, respectively, so the treatment led to a loss of 2.548x105 mol/L 
CO2 from the solution. 

 

 

2. The reported composition of a groundwater in the Midwest of the U.S. is as follows. 

TOTCa 467 mg/L as CaCO3 
TOTMg 257 mg/L as CaCO3 
TOTSO4 502 mg/L 
Alk 337 mg/L as CaCO3 (presumed to be from CO3 species) 



pH 7.7 

The only other ion expected to be present at a significant concentration is Na+. 

(a) Determine whether the solution is undersaturated, saturated, or supersaturated 
with respect to calcite, aragonite, and gypsum (Ks0’s in Table 8.7). Estimate 
activity coefficients using the Davies Equation. Which solid(s), if any, would 
you expect to be present if the solution reached equilibrium? 

(b) The water must be treated to reduce the concentrations of all the ions listed. 
Consultants have recommended adding BaCl2 to remove the SO4

2 from 
solution by precipitation of BaSO4(s) (Ks0

 = 109.98), and then using 
conventional softening to reduce the Ca2+ and Mg2+ concentrations. However, 
BaCO3(s) is quite insoluble (Ks0

 = 108.57) and might consume much of the 
Ba2+ that is added. Because BaCl2 is relatively expensive, such a situation 
would be undesirable. Determine how much, if any, BaSO4(s) can be 
precipitated without precipitating any BaCO3(s). Although the BaCl2 addition 
would change the ionic composition of the solution, assume that the ionic 
strength remains approximately the same as in part a. Also assume that any 
solids that were supersaturated in the initial solution remain supersaturated, so 
that Ba-containing solids are the only ones that form. 

Answer. (a) We first need to determine the composition of the solution in greater detail. 
The concentrations of TOTCa and TOTMg are given in mg/L as CaCO3. For TOTCa, this 
means a solution with the specified concentration (467 mg/L) of CaCO3 would contain 
the same concentration of TOTCa as the actual solution does. The MW of CaCO3 is 100, 
so the actual molar concentration of TOTCa in the solution is: 

33

3

mg as CaCO 1 mol Ca mol Ca
Ca 467 4.67x10

L 100,000 mg CaCO L

TOT TOT
TOT      

  
 

For TOTMg, the situation is almost the same, except that in this case, we have to 
recognize that one mole of TOTCa is equivalent to one mole of TOTMg (they both 
have the same charge, and they both have roughly identical effects on water quality). 
The corresponding calculation for TOTMg is therefore: 
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The concentration of TOTSO4 is expressed directly in terms of the mass of SO4
2, so 

its molar concentration can be calculated as follows: 
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The alkalinity can be converted to units of equiv/L Alk by noting that 1 equiv of 
CaCO3 is 50 g of CaCO3. Thus: 
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The pH is 7.7 and is the activity (not the concentration) of H+ in solution. Thus, we 
know that {H+}= 107.7 and {OH}= 106.3, but at this point we do not know the 
concentrations of H+ and OH. Nevertheless, we can be confident that those species 
do not contribute significantly to the total charge balance or the ionic strength of the 
solution, given the much larger concentrations of the other solutes. 

Although we don’t know the concentration of HCO3
 at this point, we can assume 

that at pH 7.7, that concentration in mol/L equals the value of ALK in equiv/L. 
Therefore, we can estimate [HCO3

] = 6.74x103. Also, given the pH, we can assume 
that essentially all the TOTCa and TOTMg are present as Ca2+ and Mg2+, respectively, 
and that CO3

2 contributes negligibly to the charge balance or ionic strength. Based 
on all the above information, we can prepare the following table: 

Ion Concentration, ci 
(mol/L) 

Charge, zi ci
 zi (ci

 zi
2) / 2 

Ca2+ 4.67 x 103 +2 9.34 x 103 9.34 x 103 

Mg2+ 2.57 x 103 +2 5.14 x 103 5.14 x 103 

SO4
2 5.23 x 103 2 1.05 x 102 1.05 x 102 

HCO3
 6.74 x 103 1 6.74 x 103 3.37 x 103 

SUM 2.72 x 103  

Na+ 2.72 x 103 +1 2.72 x 103 1.36 x 103 

SUM 2.97 x 102 

 

The calculation of the Na+ concentration is based on a charge balance, the idea being 
that the positive charge on that ion must balance the net negative charge on the ions 
whose concentrations are known. 

The bottom entry in the final column indicates the ionic strength of the solution. 
Using this ionic strength in conjunction with the Davies Equation, we can find the 
activity coefficients of ions with charges of 1 and 2 as: 
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1 0.847   

A similar calculation yields  
2

 = 0.516. We can use these to calculate the activities of 
Ca2+, SO4

2, and HCO3
: 

Species Concentration, ci 
(mol/L) 

 
i ai 

Ca2+ 4.67 x 103 0.516 2.41 x 103 

SO4
2 5.23 x 103 0.516 2.70 x 103 

HCO3
 6.74 x 103 0.847 5.71 x 103

 

We can then use the Ka expressions to calculate the activities of CO3
2: 
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Finally, we can test for supersaturation of the solids: 
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The solubilities of both calcite (Ks0
 = 3.31x109) and aragonite (Ks0

 = 4.37x109) are 
exceeded, but that of gypsum is not. Therefore, gypsum will not precipitate. Since 
calcite and aragonite have identical stoichiometries but different Ks0 values, the 
solution cannot be in equilibrium with both of them. The less soluble solid will 
control the solution composition, so at equilibrium, calcite will be present and 
aragonite will not. 

(b) BaCO3(s) will first precipitate when its solubility product is exceeded. The CO3
2 

activity in the solution was determined in part a, so the Ba2+ activity and 
concentration for incipient precipitation of BaCO3(s) are: 
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At this Ba2+ activity, the activity and concentration of dissolved SO4
2 are: 
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The amount of BaSO4(s) that has precipitated when this much SO4
2 remains in 

solution is: 

  2 3 6.00 3
4 4BaSO SO SO 5.23x10 10 5.23x10s TOT               

Thus, essentially all the SO4 precipitates before any BaCO3(s) forms. 


