CEE 543 Aut 2012 HW#9

1. During turnover of a lake, reduced bottom water is mixed with oxidized surface water. Assume that bottom and surface waters with the following compositions mix in a 1:1 ratio.

Bottom water:
$$TOT[Fe(II)] = 1.5x10^{-3}$$
; $TOT[S(-II)] = 3x10^{-4}$; $(SO_4^{2-}) = 1.0x10^{-3}$
Surface water: $(O_2(aq)) = 3x10^{-4}$; $(SO_4^{2-}) = 1.3x10^{-3}$; $(NO_3^-) = 1.2x10^{-4}$

(a) Prepare a $\log c$ - pe diagram for the mixture for the range -20 < pe < 20, assuming that solution pH is 7.5 and the ionic strength is fixed at $0.005\,M$. Assume that the elements listed above can exist in the following oxidation states:

Fe:
$$+II$$
 or $+III$; S: $-II$ or $+VI$; N: $-III$, 0, or $+V$; and O: $-II$ or 0

You should use Visual Minteq to generate the data for the concentrations of Fe, S, and N species as a function of pe. However, the current Visual Minteq database does not include $O_2(aq)$ as a species, nor does it contain information about any O(0)/O(-II) redox reaction, so you should develop the data for the $O_2(aq)$ curve separately and add that information to the spreadsheet and graph manually. Consider Fe(II)-OH and Fe(III)-OH complexes, but ignore all other complexes that might form. Also ignore any possible precipitation reactions. Plot data only in the concentration range $-2 > \log c > -14$. (Hint: If Visual Minteq returns an error message when you scan across the pe range of interest, try running it twice – once from pe 0 to pe 20, and then from pe 0 to pe -20.)

(b) Write the *TOTe* equation for the mixed solution, and find the solution composition at equilibrium.