CEE 543 Aut 2012 HW#8

- 1. Prepare a log c pH diagram for a solution of 3 x 10⁻⁴ M CuCl₂, 10⁻³ M NH₄Cl, and 5x10⁻⁴ M Ca(OH)₂, showing all Cu-containing species present at concentrations greater than 10⁻⁶ M.
 - (a) Find the pH of the solution.
 - (b) What partial pressure of ammonia is in equilibrium with the solution in part (a)?
 - (c) Prepare a log c pH diagram for the solution if it equilibrates with a gas phase containing ammonia at a partial pressure of $10^{-5.5}$ atm.
- 2. A wastewater contains the following constituents:

Total ferrous iron [TOTFe(II)]	2.0 mg/L
<i>TOT</i> Ca	65 mg/L
TOTPO ₄ -P	10 mg/L
<i>TOT</i> NH ₄ -N	140 mg/L
Alkalinity	2.5 meq/L
pH	7.5
Ionic Strength	$10^{-2.0}$

- (a) Find the ion activity products of the following solids that might precipitate in the solution, based on the precipitation reactions as they are modeled in Visual Minteq: Ca(HPO₄); Ca₃(PO₄)₂(*am*1); Fe(OH)₂(*am*); hydroxyapatite; and vivianite.
- (b) What is the value of log *K* associated with the solid vivianite in the default Visual Minteq database, what reaction does it apply to, and what is the corresponding, conventional value of log K_{s0} for the solid?
- (c) Which of the solids considered in part (a) are supersaturated in the initial solution?
- (d) Which solid(s) is/are present at equilibrium, and what is the equilibrium composition of the solution?
- 3. Consider a treated domestic wastewater containing 12 mg/L PO_4 -P and with an ionic strength of 0.007. You wish to reduce the P concentration to 0.2 mg/L by precipitation of AlPO₄(*s*), with pK_{s0} = 22.5.
 - (a) Prepare a log *c* pH diagram showing curves for the concentration of PO_4^{3-} in the untreated and treated solutions. On the same diagram, show the Al³⁺ activity that would cause the PO_4^{3-} concentration in each solution to be in equilibrium with AlPO₄(*s*).
 - (b) Alum [Al₂(SO₄)₃·14H₂O] is added to the initial solution at a dose corresponding to10^{-3.0} M *TOT*Al. Add a line to the diagram prepared in part (a) representing the Al³⁺ concentration as a function of pH immediately after the alum dissolves, before any solid forms. (Hydrolysis and complexation reactions are typically much faster than precipitation reactions.) In which pH range(s) is AlPO₄(s) supersaturated?

- (c) How much $Al_2(SO_4)_3 \cdot 14H_2O$ (in mg/L) must be added to the original solution to achieve the treatment goal, if the pH is well-buffered at 7.5? Keep in mind that one Al ion precipitates for each PO₄ ion removed. For now, ignore possible precipitation of aluminum hydroxide and aluminum oxide solids.
- (d) Compute the Al^{3+} concentration that would be in equilibrium with gibbsite [a crystalline form of $Al(OH)_3(s)$] at pH 7.5 in the original solution. Discuss the consequences of this result for your answer to parts (b) and (c).