- 1. (a) Express the concentration of Ca^{2+} in the Mississippi River (composition shown in Table 1.1) in moles of Ca^{2+} per liter and in milligrams per liter *as CaCO*₃.
 - (b) The concentration of K⁺ is not given in the table. If the charge imbalance were attributable entirely to K⁺, what would its concentration be? Note that, in the table, the HCO₃⁻ concentration is expressed in terms of alkalinity *as CaCO₃*. For waters at near-neutral pH such as this one, the assumption is commonly made that the alkalinity is contributed entirely by bicarbonate (HCO₃⁻) ions. Each mole of CaCO₃ has two equivalents of alkalinity, whereas each mole of bicarbonate has only one. Therefore, to compute the molar concentration of HCO₃⁻ in the river, you must convert the given alkalinity from mg/L as CaCO₃ to meq/L, then assume that the concentration of HCO₃⁻ in meq/L is the same as the alkalinity in meq/L, and finally convert from meq/L of HCO₃⁻ to mmol/L of HCO₃⁻.
 - (c) Based on your result for part (b), what is the TDS of the water in milligrams per liter? Assume that during the drying of the sample, all the HCO₃⁻ undergoes the reaction 2 HCO₃⁻ ↔ H₂O + CO₂ + CO₃²⁻. The H₂O and CO₂ generated by this reaction are volatilized (i.e., transferred to the gas phase), but the CO₃²⁻ remains as part of the dry solid residual, as do all the other ions in the original solution.
 - (d) Compute the ionic strength of the river water, if the K⁺ concentration is the value computed in part (b), and determine the activities of Ca²⁺, SO₄²⁻, and Cl⁻, using the Davies equation to estimate activity coefficients.
- 2. A river contains 8 mg/L DOC in molecules whose average composition is $C_{10}H_{15}O_4N$.
 - (a) What is the mass fraction of C in the organic molecules? What is its mole fraction?
 - (b) What are the mass fraction and mole fraction of these molecules in the whole solution?
- 3. If the concentration of silver in seawater is 50 parts per trillion, and the total volume of seawater in the oceans of the world is approximately $1370 \times 10^6 \text{ km}^3$, determine:
 - (a) the total mass (kg) of silver in the oceans of the world;
 - (b) the total volume of seawater that you would have to process to recover one kilogram of silver, assuming an extraction process with 100% efficiency.
- 4. The partial pressures of nitrogen (N₂), oxygen (O₂), and carbon dioxide (CO₂) in air are 0.78 atm, 0.21 atm, and $10^{-3.5}$ atm, respectively.
 - (a) Calculate the mass (mg) of each of these components in 1 L of air at 25° C.
 - (b) Calculate the concentration in air at 25° C of each of these components in μ g/m³.