1. (a) Express the concentration of Ca^{2+} in the Mississippi River (composition shown in Table 1.1) in moles of Ca^{2+} per liter and in milligrams per liter as CaCO_{3}.
(b) The concentration of K^{+}is not given in the table. If the charge imbalance were attributable entirely to K^{+}, what would its concentration be? Note that, in the table, the $\mathrm{HCO}_{3}{ }^{-}$concentration is expressed in terms of alkalinity as CaCO_{3}. For waters at near-neutral pH such as this one, the assumption is commonly made that the alkalinity is contributed entirely by bicarbonate $\left(\mathrm{HCO}_{3}^{-}\right)$ions. Each mole of CaCO_{3} has two equivalents of alkalinity, whereas each mole of bicarbonate has only one. Therefore, to compute the molar concentration of $\mathrm{HCO}_{3}{ }^{-}$in the river, you must convert the given alkalinity from mg / L as CaCO_{3} to meq/L, then assume that the concentration of $\mathrm{HCO}_{3}{ }^{-}$in $\mathrm{meq} / \mathrm{L}$ is the same as the alkalinity in meq/L, and finally convert from $\mathrm{meq} / \mathrm{L}$ of HCO_{3}^{-}to $\mathrm{mmol} / \mathrm{L}$ of $\mathrm{HCO}_{3}{ }^{-}$.
(c) Based on your result for part (b), what is the TDS of the water in milligrams per liter? Assume that during the drying of the sample, all the $\mathrm{HCO}_{3}{ }^{-}$undergoes the reaction $2 \mathrm{HCO}_{3}^{-} \leftrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}+\mathrm{CO}_{3}{ }^{2-}$. The $\mathrm{H}_{2} \mathrm{O}$ and CO_{2} generated by this reaction are volatilized (i.e., transferred to the gas phase), but the $\mathrm{CO}_{3}{ }^{2-}$ remains as part of the dry solid residual, as do all the other ions in the original solution.
(d) Compute the ionic strength of the river water, if the K^{+}concentration is the value computed in part (b), and determine the activities of $\mathrm{Ca}^{2+}, \mathrm{SO}_{4}{ }^{2-}$, and Cl^{-}, using the Davies equation to estimate activity coefficients.
2. A river contains $8 \mathrm{mg} / \mathrm{L}$ DOC in molecules whose average composition is $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{~N}$.
(a) What is the mass fraction of C in the organic molecules? What is its mole fraction?
(b) What are the mass fraction and mole fraction of these molecules in the whole solution?
3. If the concentration of silver in seawater is 50 parts per trillion, and the total volume of seawater in the oceans of the world is approximately $1370 \times 10^{6} \mathrm{~km}^{3}$, determine:
(a) the total mass (kg) of silver in the oceans of the world;
(b) the total volume of seawater that you would have to process to recover one kilogram of silver, assuming an extraction process with 100% efficiency.
4. The partial pressures of nitrogen $\left(\mathrm{N}_{2}\right)$, oxygen $\left(\mathrm{O}_{2}\right)$, and carbon dioxide $\left(\mathrm{CO}_{2}\right)$ in air are $0.78 \mathrm{~atm}, 0.21 \mathrm{~atm}$, and $10^{-3.5} \mathrm{~atm}$, respectively.
(a) Calculate the mass (mg) of each of these components in 1 L of air at $25^{\circ} \mathrm{C}$.
(b) Calculate the concentration in air at $25^{\circ} \mathrm{C}$ of each of these components in $\mu \mathrm{g} / \mathrm{m}^{3}$.
