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MASS BALANCES 

This document reviews mass balances. Mass balance equations are formal statements of the 
law of conservation of mass, and it is no exaggeration to think of them as the “F = ma” of 
environmental engineering. They represent the starting point, either explicitly or implicitly, for 
almost any environmental analysis, allowing us to keep track of any material as it moves through 
and/or is transformed in the environment. Mass balances help us answer questions about the rate 
at which pollutants accumulate in a system, the maximum concentration that a pollutant might 
reach at a point in a river following an upstream spill, or the size of a reactor that we have to 
build to achieve a desired percentage reduction in a pollutant’s concentration. 

These types of balances are useful in areas other than water treatment. For example, when we 
keep track of total funds in a bank, we consider deposits, withdrawals, interest, and fees. 
Similarly, keeping track of population of 18-24 year-olds in Washington requires that we 
consider immigration, emigration, 18th birthdays, 25th birthdays, and deaths. Chemical 
accounting works the same way. A balance on the CO2 in the room accounts for CO2 entering or 
leaving through the door and windows, CO2 being generated by breathing, and (if there are 
plants in the room) CO2 being consumed by photosynthesis. Note, in all of these examples, that 
(1) it is critical that we define the object of interest and the boundaries of the system precisely; 
(2) moving something around inside the boundaries has no effect on the amount inside, and 
(3) we can know if something is inside or outside the system at a given instant, but we can’t tell 
how it got there or how long it has been there; all we know is that it is there. In mass balance 
equations, the region in which the accounting is being done is referred to as the control volume 
(CV). 

In this course, we are most interested in keeping track of pollutants as they pass through 
aquatic systems (particularly water treatment processes), considering the possibility that they 
might undergo reaction while they are in the system. In general, these mass balances will have 
terms that account for advection of the pollutants (i.e., entry into or departure from the system 
with the flowing water), and reaction of the pollutant while it is in the system. 

The flow of water into the system might be either steady or unsteady. Similarly, even if the 
flow rate is steady, the concentration of the pollutant in the influent stream might be steady or 
changing over time. The rate of the reaction is likely to depend on the concentration of the 
constituent, and possibly on the concentrations of other components of the solution. Often, the 
rate expression can be written as a simple function of the concentrations of the constituents, as 
we will see shortly. The local concentrations often depend on the extent of mixing in the system, 
which might range from negligible to very intense. 

The various factors described above all affect the behavior of the system, and in particular, 
the concentrations of pollutants as they exit the system. Our goal is typically to predict those 
concentrations for specified operating conditions (which might either exist already or which we 
might specify as part of a reactor design). Essentially the same tools can be used to analyze 
experimental results, so that we can characterize certain unknown parameters in a system. Our 
approach is to write mass balances for idealized systems, predict the response of those systems 
under the ideal conditions, and then test real systems to see how closely they match our idealized 
expectations. 
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Mass balances take several forms. In some systems, no material enters or leaves the CV, and 
the rate of change is not considered important. In such systems, the mass balance simply states 
that everything that was present in the system at some initial time must be there at all later times, 
albeit perhaps in different forms. In systems with transport across the boundaries of the CV 
and/or where the rate of change is important, mass balances are written in terms of rates rather 
than absolute amounts: the rate at which material accumulates in the CV equals the net rate at 
which it is carried into the CV by flow (i.e., advection), plus the net rate at which it is injected 
into or generated inside the CV by non-advective processes. Such processes might include 
addition of a dry chemical to the solution (we consider advection to include only liquid streams) 
or, more often, chemical reaction inside the system. Those who have taken the CEE 3xx 
curriculum have seen mass balances in CEE 350 and CEE 342 (where they might have been 
presented in the context of the Reynolds’ Transport Theorem, in conjunction with balances on 
energy and momentum). 

In cases where we are dealing with rates of change, and where the chemical of interest (i) 
enters the CV only in water (not as an addition of dry materials), the mass balance can be 
expressed in a word equation as follows: 

Rate of increase Net rate of Net rate of formation
of storage of  in advection of  into of  by reaction inside

the control volume the control volume the control volume
i i i

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

Because we will be dealing mostly with substances dissolved or dispersed in water, it is 
convenient to express the storage and transport terms in the above equation based on 
concentrations. Doing that, and translating the word equation into symbols yields: 

inflows outflowsCV CV
i i i i

d cdV Q c Q c rdV
dt
⎛ ⎞

= − +⎜ ⎟
⎝ ⎠

∑ ∑∫ ∫  

where r is the reaction rate expression and corresponds to the rate of generation of i in the CV, 
with units of mass/volume-time. We often deal with substances that are destroyed by reactions, 
in which case r is negative. Note that, in the above equation, c is the concentration inside the CV 
and, in general, is different from the concentrations in the various inflow and outflow streams. 
The dimensions of each term in the above mass balance are mass/time. 

Expressions for r must be determined from experiment. Typically, r depends on the 
concentration of the substance of interest, as well as the concentrations of other substances with 
which it reacts; e.g., for a reaction between A and B to form product P, the rate of “generation” 
of A might be given by: A A Br kc c= − . Nevertheless, it is often acceptable to represent ri as a 
simple function of just the concentration of i (ci). Some commonly encountered expressions for ri 
(dropping the subscript, since both r and c refer to the same species) include: 
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The dimensions of k are different for the different expressions, and must be such that r has 
dimensions of mass/volume-time. Note that, when this is done, all the terms in the mass balance 
have overall dimensions of mass/time. 

The average concentration of i in a CV is the mass of i in the CV divided by the volume of 
the CV. However, the above expressions for r suggest that the rate of reaction of i is often 
dependent on its local concentration, so characterizing the average concentration in a CV might 
not be useful. In particular, if the CV contains fluid with varying concentrations, then the rate of 
reaction will also vary from point to point, and the average rate might not be the same as the rate 
based on the average concentration. Therefore, to solve the mass balance equation, we need to 
define a CV in which the concentration is uniform; in some cases, that requires that we choose a 
CV that is differentially small. Correspondingly, it is important to be able to characterize the 
mixing (or, more generally, the hydraulic characteristics) of a reactor. 

The mixing characteristics of a reactor are often represented in an idealized way. Usually, for 
systems with steady flow in and out, two limiting cases of mixing are considered. One limit is a 
complete-mix reactor (CMR). In such a reactor, the mixing is envisioned to be so intense that 
there are no gradients anywhere in the system. As a consequence, since the effluent must be 
taken from someplace within the system, the concentration of a pollutant in the effluent (cout) has 
the same as that everywhere in the system (c). In addition, the fact that c is independent of 
location in a CMR means that the two integrals in the mass balance can be eliminated and 
converted into simpler expressions, as follows: 

( )
CV

d cVd cdV
dt dt
⎛ ⎞

=⎜ ⎟
⎝ ⎠
∫  

CV

rdV rV=∫  

At the other extreme, some reactors have minimal mixing and can be idealized as having no 
mixing whatsoever. These reactors are referred to as plug flow reactors (PFRs). In such reactors, 
water flows from one end to the other without interacting at all with the water upstream or 
downstream. As a result, the flow pattern can be visualized as beakers on a conveyor belt. 

Reactors intended to behave like CMRs and like PFRs are very common in water treatment 
processes. CMRs are particularly useful for mixing chemicals into the bulk flow and also for 
concentration equalization (although this is not usually a major concern for drinking water 
systems), and PFRs are useful for treatment steps in which it is important to assure that all of the 
water remains in the reactor for approximately the same amount of time (e.g., disinfection 
processes). In addition, these models are applied to understand and predict the behavior of many 
natural aquatic systems, with lakes and ponds typically modeled as CMRs and rivers as PFRs. 
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For both CMRs and PFRs, it is useful to define the mean hydraulic residence (retention, 
detention) time as td

 = V/Q. (This value is represented in the literature by a variety of symbols, 
including td, θh, and τ.) Note that the mean residence time is not necessarily the actual residence 
time of the majority of the fluid “parcels”. In the case of PFRs, all parcels of fluid spend exactly 
td in the reactor; by contrast, in a CMR, parcels might spend anywhere from a very short to a 
very long time in the reactor, because at any instant after they enter the CV, they have a random 
likelihood of being near the outlet port; nevertheless, despite this continuum of actual residence 
times, the mean residence time is computed just as it is for a PFR (i.e., as V/Q). 

In some cases, we need to consider time-varying flow rates and concentrations in reactors, 
but often we deal with systems that have stable conditions, so that the concentration of i at any 
location in the system is constant over time (even though it might vary from one location to the 
next). Such systems are referred to as being at steady state, and are characterized by values of 
zero for the storage term in the mass balance. 

One other type of reactor is worth mentioning at this time. A batch reactor is one that has no 
flow in or out; i.e., Q = 0. Batch reactors are virtually always assumed to be well-mixed. 

 

Example 1. We wish to disinfect a solution flowing at 0.8 m3/s as it passes through an intensely 
mixed 3600-m3 tank. The influent contains 104 bacterial cells per liter and no chlorine, and we 
plan to dose it with a stock solution containing 1000 mg/L at a rate that will cause the chlorine 
concentration in the tank to be 2 mg/L. The chlorine reacts with the water in such a way that it is 
depleted at a rate (in mg/L-h) given by ( )0.20 / hCl Clr c= − . When exposed to chlorine, the 

bacterial die off at a rate (in cells/L-s) given by: ( )0.05/s
1 mg/L

Cl
bact bact

Cl

c
r c

c
= −

+
. When the system is 

operating at steady state, what flow rate of stock solution is required, and what bacterial 
concentration should be expected in the effluent from the tank? 

Solution. A schematic of the process is as follows. 

 

Qin, cCl, in
 = 0 

Qstock, cCl, stock 

VCMR 

cCl 

cCl 

cCl 

cCl 
cCl 

Qin+ Qstock, 
cCl, out 
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The reactor is a CMR with steady flows. As a result, the Cl concentration is the same 
everywhere inside the tank (cCl), and that concentration is also the concentration in the effluent 
(since the effluent must come from somewhere inside). However, this effluent concentration is 
different from cCl, in. Applying the mass balance equation to Cl, we find: 

, ,
inflows outflowsCV CV

Cl j Cl j j Cl j Cl
d c dV Q c Q c r dV
dt
⎛ ⎞

= − +⎜ ⎟
⎝ ⎠

∑ ∑∫ ∫  (1) 

where each j represents a different inflow or outflow stream. The system is operating at steady 
state, so the term on the left of the equation is zero. And, because the tank is a CMR, the reaction 
rate will be the same throughout the tank, which allows us to take rCl be taken outside the 
integral on the far right. Therefore, noting that there are two inflows (the main inflow stream and 
the stock solution containing Cl) and one outflow, and that the main inflow stream contains no 
chlorine, we can write: 

,0 in Cl inQ c= ( ),stock Cl stock in stock Cl ClQ c Q Q c r V+ − + +  

( ),0 stock Cl stock Cl in Cl ClQ c c Q c r V= − − +  

,

in Cl Cl
stock

Cl stock Cl

Q c r VQ
c c

−
=

−
 

Substituting ( )0.20 / h Clc−  for Clr  and carrying out the necessary algebra, we find: 

( ) ( )( )
, ,

0.2 / h 0.2 / hin Cl Cl in Cl
stock

Cl stock Cl Cl stock Cl

Q c c V Q V c
Q

c c c c
− −⎡ ⎤ +⎣ ⎦= =

− −
 

( )( ) ( )( ) ( )3 3 30.8 m s 3600 s h 0.2 / h 3600 m 2 mg/L m L7.21 2.00
1000 mg/L 2 mg/L h s

⎡ ⎤+⎣ ⎦= = =
−

 

Note that, if the Cl were just diluted and did not react, the stock solution (1000 mg/L) would 
have to be diluted 500x to yield a concentration in the reactor of 2 mg/L. A 500x-dilution 
corresponds to a stock solution flow rate of (800 L/s)/500, or 1.6 L/s. Thus, the reaction increases 
the required dosing rate by 25%; more generally, the key point is that, by using a mass balance, 
we were able to carry out a mathematically simple analysis to answer an important question that 
we previously did not know how to address. 

We can determine the expected bacterial population in the effluent by writing a mass balance 
on the organisms: 
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, ,
inflows outflowsCV CV

bact i bact i i bact i bact
d c dV Q c Q c r dV
dt
⎛ ⎞

= − +⎜ ⎟
⎝ ⎠

∑ ∑∫ ∫  

, ,0 in bact in stock bact stockQ c Q c= + ( )in stock bact bactQ Q c r V− + +  

( ) ( )1

,

3.0 min
1 mg/L

Cl
in bact in in stock bact bact

Cl

c
Q c Q Q c c V

c

−⎧ ⎫⎪ ⎪= − + − ⎨ ⎬+⎪ ⎪⎩ ⎭
 

( ) ( )
,

13.0 min
1 mg/L

in bact in
bact

Cl
in stock

Cl

Q c
c

c
Q Q V

c

−
=

+ +
+

 

( )( ) ( )

3
4

13 3
3

m cells0.8 10
s L cells66

L3.0 min 2 mg/Lm m 1 h 1 min0.8 4.3 3600 m
s h 3600 s 1 mg/L 2 mg/L 60 s

−

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠= =

⎛ ⎞⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟⎜ ⎟ +⎝ ⎠ ⎝ ⎠⎝ ⎠

 

Thus, the bacterial concentration is reduced from 10,000 to 66 cells/L as the water passes 
through the tank. More generally, we see that by knowing the inputs, the reactor volume, and the 
reaction rate expression, we were able to use the mass balance to find the concentration inside 
the reactor, and also in the effluent. In other situations, we might know the influents, the rate 
expression, and the required effluent quality, and want to determine the reactor volume required 
to achieve the target; a similar approach can be used. 

 

The preceding example presented a mass balance analysis for a CMR with flow, operating at 
steady-state and with two specific reaction rate expressions. Many systems have only a single 
significant inflow and outflow, or no flow at all. In the following pages, four general categories 
of reactors are identified, and expressions are developed for the change in pollutant concentration 
that can be expected in those systems. One or two example calculations are then shown for each 
category. 

Case 1: Steady-state CMR, receiving a reactive substance with any reaction rate r. 

( )d Vc
dt in outQc Qc rV= − +  

( )in outQ c c rV− = −  
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in out d
Vc c r rt
Q

− = − = −  (2) 

The results for first-order and second-order decay reactions are: 

First order: 1in dc c k ct− =  (3a) 

 
11

in

d

cc
k t

=
+

; 
1

1 1in
d

out

ct
k c
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 (3b, c) 

Second order: 2
1in dc c k c t− =  (4a) 

 2

2

1 1 4
2

d in

d

k t c
c

k t
− + +

= ; 
2

1 1in
d

out out

ct
k c c

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 (4b, c) 

 

Example 2. Under certain circumstances, the rate of oxidation of iron to a form that precipitates 
out of solution is second order: 2 2

2
2Fe Fe

r k c+ += − , with k2
 = 6000 M−1s−1. If these conditions apply, 

what mean residence time is required in a CMR at steady-state to lower the Fe2+ concentration 
from 4 μM to 0.2 μM? If the flow rate is 0.5 m3/s, what size tank is required? 

Solution. For the given conditions (second order reaction in a steady-state CMR), we can 
substitute known values into Equation 4c to determine the required td to accomplish the desired 
degree of reaction. The result is: 

( )( )( )
6

61 1 6

1 4x10 1 26.4 min
0.2x106000 0.2x10 60 s/mind

Mt
MM s M

−

−− − −

⎛ ⎞
= − =⎜ ⎟

⎝ ⎠
 

Then, according to Equation 3: 

( )
3

3m 60 s0.5 26.4 min 792 m
s mindV Qt

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

Example 3. Air is to be bubbled through the solution in the reactor described above, in order to 
strip out of the solution trace amounts of a solvent that have contaminated the water. The rate of 
loss of the solvent from the solution can be characterized by the equation ( )0.03 minr c= − , 
where c is the solvent concentration. What fraction of the solvent will be removed from the water 
as it passes through the reactor? 
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Solution. The removal of solvent from the solution is characterized by a first-order rate equation. 
Since the reactor is a steady-state CMR, the change in c is therefore given by Equation 3b. 
Substituting known values into that equation, we find: 

( )( )1

1 1 0.558
1 1 0.03/ min 26.4 minin d

c
c k t

= = =
+ +

 

Thus, 55.8% of the solvent will remain in the solution, and 44.2% will be removed. 

Case 2: Non-steady-state CMR, receiving a non-reactive substance (tracer) 

Another situation of interest is the non-steady state response of a CMR to a step change in 
the input concentration of a non-reactive substance (r = 0), commonly referred to as a tracer. 
Tracers are used as diagnostic tools to determine mixing patterns in reactors and to assess 
whether reactors have dead space. Consider a CMR with a single inflow and single outflow, both 
of the same magnitude (so that V is constant), which contains some concentration of tracer at 
time zero [c(0)]. Then, right at t = 0, the input concentration of tracer changes to cin, which is 
different from c(0). We wish to predict the tracer concentration exiting the CMR at all 
subsequent times (t > 0). To do so, we begin by writing the mass balance equation for the tracer. 
Because r = 0, the generic mass balance for a CMR can be simplified as follows: 

( )
in out

d Vc
Qc Qc rV

dt
= − +  

1

in out d

dc Q dt dt
c c V t

= =
−

 

Equating c with cout (because the reactor is a CMR), carrying out the integration for the constant 
value of cin (at t > 0), and rearranging, we find: 

( )
( )

0ln
0

in

in d d

c c t t t
c c t t

− −
− = =

−
 

( )
( )

ln
0

in

in d

c c t t
c c t

−
= −

−
 

( ) ( )( )0 expin in
d

tc t c c c
t

⎛ ⎞
= − − −⎜ ⎟

⎝ ⎠
 (5) 

In many cases, rather than a step change in tracer input concentration, a tracer that is not 
present in the “normal” influent is added as a spike at the time designated t = 0, and no more is 
added thereafter. In that case, the added tracer immediately disperses throughout the reactor (this 
is the nature of a CMR), so c(0) equals the mass of tracer added divided by the volume of water 
in the CMR. Then, at all t > 0, cin is zero. Thus, rather than a gradual increase in tracer 
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concentration to cin (as occurs when c(0) = 0 and cin
 > 0), the tracer concentration following a 

spike input gradually decreases from c(0) to 0. Despite these differences, both scenarios are 
characterized by the same mass balance equation, so both obey Equation 5; the result for the 
spike input can be obtained by substituting cin

 = 0 into that equation, yielding: 

( ) ( )0 exp
d

tc t c
t

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 (6) 

The mass of tracer (or, for that matter, any constituent) that exits over any short period dt is 

given by c Q dt, so the mass that has exited from time zero until some later time t is 
0

t

Qcdt∫ . 

Example 4. Due to algal growth in a water supply reservoir in a neighborhood, the water has 
acquired an unpleasant taste. The compound is non-degradable, and the water utility has decided 
that the best way to deal with the situation is simply to flush the contaminant out of the system. 
The reservoir contains 11,000 m3 of water, and the proposal is to pump 300 m3/h of clean water 
through the system and discharge the effluent to the sewer system until 95% of the offending 
compound has been removed. If the reservoir is intensely mixed, how much flushing water will 
be required? 

Solution. The compound is non-reactive and therefore behaves as a tracer. The contaminant 
concentration in the flushing water is zero, so Equation 6 applies. When 95% of the contaminant 
has been flushed out, the concentration will be 5% of the initial concentration, so: 

( )
( )

0.05 exp
0 d

c t t
c t

⎛ ⎞
= = −⎜ ⎟

⎝ ⎠
 

( )ln 0.05dt t= −  

The hydraulic detention time in the reservoir during the flushing operation will be: 

3

3

11,000 m 36.7 h
300 m /hd

Vt
Q

= = =  

so the required flushing time and the volume of flushing water will be: 

( ) ( )( )ln 0.05 36.7 h 3.00 110 hdt t= − = − − =  

( )3 3
' 300 m /h 110 h 33,000 mreq d dV Qt= = =  

Case 3: Steady-state PFR, receiving a reactive substance 

Although many reactors are intensely mixed, with the goal of achieving the ideal case of a 
CMR, other reactors are designed to have minimal mixing, with the ideal being no mixing at all. 
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As noted above, the ideal, limiting case for such a situation is the PFR. In a PFR, the water does 
not mix at all with water that came into the reactor earlier or water that comes in later. In effect, 
each droplet of water flows through the PFR completely “unaware” that other water is also 
present; each droplet might as well be in a separate container, moving through reactor as though 
the container were on a conveyor belt. If a substance is undergoing a reaction in such a container, 
its concentration will change as it moves. Correspondingly, the concentration in a PFR changes 
as a function of the amount of time that the solution is in the reactor, and hence as a function of 
the location of the water in the reactor (i.e., for a substance that is being destroyed, the 
concentration decreases from the inlet to the outlet). This is the primary difference between a 
CMR and a PFR. 

 

Like CMRs, PFRs can be operated at steady-state. However, in the case of a PFR, even 
though the concentration at any particular location is constant over time, the concentration varies 
from one location to the next. When we analyze the amount of reaction in a PFR at steady-state, 
we might try to start with Equation 2, which is the mass balance equation for a CMR at steady-
state: 

( )d Vc
dt in outQc Qc rV= − +  (2) 

However, if we try to substitute an expression for r into Equation 2 for a PFR, we encounter a 
problem: r is likely to have different values at different locations in the reactor, since r depends 
on c, and c varies from one location to another in the reactor. (Recall that, in a CMR, we could 
equate c at all points inside the reactor with cout; therefore, r had the same value everywhere in 
the reactor.) To overcome this problem, rather than choosing the whole reactor as the control 
volume for our analysis, we choose a differential volume (in which the concentration can be 
considered to be uniform). In that case, the mass balance equation becomes: 

0 dcQc Q c dx rAdx
dx

⎛ ⎞= − + +⎜ ⎟
⎝ ⎠

 

dcQ rA
dx

=  

dc A dx
r Q
=  

Q, cin 
VPFR 

c1, r1 
Q, cout c2, r2 c3, r3 c4, r4 
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0

out

in

c L

d
c

dc A AL Vdx t
r Q Q Q
= = = =∫ ∫  (7) 

First order: 
1

out

in

c

d
c

dc t
k c

=
−∫  (8a) 

 1ln out
d

in

c k t
c

= −  

 ( )1expout in dc c k t= − ; 
1

1 ln out
d

in

ct
k c

=  (8b, c) 

Second order: 2
2

out

in

c

d
c

dc t
k c

=
−∫  (9) 

 
21
in

out
d in

cc
k t c

=
+

; 
2

1 1 1
d

out in

t
k c c
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 (9b, c) 

 

Example 5. In Example 3, we computed that 44.2% of a solvent in a water supply would be 
stripped in a CMR with a hydraulic detention time of 26.4 min, if the removal of the solvent 
obeyed the rate equation ( )0.03 minr c= − . What fraction of the solvent would be removed in a 
PFR with the same detention time, if the rate expression were also the same? 

Solution. Plugging values into Equation 8b: 

( )1expout in dc c k t= −  

( )0.03exp 26.4 min 0.453
min

out

in

c
c

⎧ ⎫= − =⎨ ⎬
⎩ ⎭

 

Since 45.3% of the solvent remains in the solution, 54.7% has been stripped. Apparently, the 
PFR is more effective than the CMR at stripping the pollutant out of the water, even though they 
have the same residence time (and therefore the same reactor volume, for a given flow rate). 

Case 4: Batch reactor containing a reactive substance 

The final type of system that we will consider is a batch reactor, i.e., a reactor that has no 
flow in or out. Batch reactors are useful for investigating reaction rates and are occasionally used 
for treatment processes. Batch reactors operate under non-steady-state conditions. In this case, 
the volume is constant, and the mass balance simplifies to: 
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( )
in

d Vc
Qc

dt
= outQc− rV+  

dc r
dt

=  (10) 

( )

( )

0 0

c t t

c

dc dt t
r
= =∫ ∫  (11) 

Note that this result is identical to that for a PFR system (Equation 11), with the substitution 
of c(0), c(t), and t for cin, cout, and td, respectively. We conclude that the extent of reaction in a 
PFR with influent concentration cin and residence time td is identical to the extent of reaction 
that would occur in a batch reactor with the same initial solution [c(0)], after a reaction time 
equal to the detention time of the PFR. This conclusion applies regardless of the details of the 
reaction rate r. The reason that this result is obtained is that a PFR is identical to “beakers on a 
conveyor belt.” The beakers represent a batch of fluid that is moving through space, but is not 
mixing with the water upstream or downstream. Since the extent of reaction in a beaker doesn’t 
depend on whether the beaker is sitting still or moving, it makes sense that the amount of 
reaction that has occurred in an imaginary beaker (on the conveyor belt) is the same as the 
amount that would occur if the beaker were stationary, if the time of reaction in the stationary 
beaker were the same as the detention time in the PFR. 

 

Example 6. What fraction of the solvent would be removed from the influent solution from 
Examples 3 and 5, if the solution were placed in a batch reactor for a time equal to td, and if the 
rate expression was the same in the batch reactor as in the reactors with flow? 

Solution. The removal in the batch reactor would be identical to that in the PFR (and greater than 
that in the CMR), i.e., 54.7% of the contaminant would be removed from the solution. 

The results for all the systems described above are summarized in Table 1. 
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Table 1a. Summary of Performance of CMRs at Steady State for nth Order Reactions 
Reaction order, n 
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Table 1b. Summary of Performance of PFRs at Steady State or Batch Reactors for nth 
Order Reactions(a) 

(a) For batch reactors, replace cin with c(0), cout with c(t), and td with t 
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Table 1c. Summary of Behavior of a Tracer In a CMR or PFR 

Reactor Type Equation Notes 

CMR ( ) ( )( )0 expin in
d

tc t c c c
t

⎛ ⎞
= − − −⎜ ⎟

⎝ ⎠
 cout at t for system with initial conc’n c(0) 

and steady input of cin thereafter 

CMR ( ) ( )0 exp
d

tc t c
t

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 cout at t for system with initial conc’n c(0) 

and cin
 = 0 thereafter(a) 

PFR ( )@ @out in dc t c t t= −  
Regardless of input concentration, output is 
identical, but delayed by td 

(a) For example, for a spike input at t = 0 and input of clean water thereafter 

The preceding analyses can be extended to provide additional information or to explore the 
behavior of more complicated systems. For example, if we wanted to know the fraction of the 
water that was in a CMR at time zero that is still there at some future time, we could apply the 
following logic. Imagine that all the water in the tank contained a tracer at some known 
concentration at t = 0, and that the water entering the tank at all subsequent times contained no 
tracer. In that case, the fraction of the original mass of tracer remaining in the tank at any given 
time would correspond to the fraction of the water that remained. According to the CMR Case 2 
analysis above, the concentration of tracer in the effluent from such a tank would be given by: 

( ) inc t c= ( )1 exp 0 exp
d d

t tc
t t

⎛ ⎞⎛ ⎞ ⎛ ⎞
− − + −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 

( )0 exp
d

tc
t

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 

The mass of tracer in the reactor initially is Vc(0), and the amount remaining at time t is 
Vc(t), so the fraction of the original tracer mass that remains in the reactor at time t is: 

( )
( )

( )

( )

0 exp
exp

0 0
d

d

tc
tc t t

c c t

⎛ ⎞
−⎜ ⎟ ⎛ ⎞⎝ ⎠= = −⎜ ⎟

⎝ ⎠
 

We find, therefore, for example, that after a time equal to twice the residence time (i.e., t = 2td), 
the fraction of the tracer remaining is exp(−2td/td), or exp(−2), which equals about 13.5%. 
Correspondingly, in a CMR, 13.5% of the water that is in the tank originally remains after two 
residence times. 

Finally, note that CMRs and PFRs are idealized endpoints of a continuum of mixing. 
Intermediate degrees of mixing are modeled in various ways, but one of the most common is to 
imagine that a system consists of several CMRs in series. Both conceptual and mathematical 
analyses show that, as a single CMR is divided into more and more small CMRs in series, the 
reactor behaves more like a PFR, both for tracers and reactive substances. 


