Chemical Equilibrium

A condition in which the system is at its minimum attainable energy level and hence has no tendency to undergo chemical change.

Analogous Physical Equilibria:
The Equilibrium Constant, K_{eq}

For any reaction with stoichiometry:

$$aA + bB \leftrightarrow cC + dD$$

$$K_{eq} = \frac{(C)^c (D)^d}{(A)^a (B)^b}$$

where (i) is a normalized (non-dimensional) concentration of chemical i, and the values are all measured in a system at equilibrium.
The Equilibrium Constant, K_{eq}

$$aA + bB \leftrightarrow cC + dD$$

$$K_{eq} = \frac{(C)^c (D)^d}{(A)^a (B)^b}$$

Analogous to defining an equilibrium constant relating liquids 1 and 2 as the ratio of the liquid column heights (h_2/h_1) for a system that has reached static equilibrium.

Note that one need not know the densities of the fluids (or understand its relation to the heights) if the "K" value is given. Also, $h_2/h_1 \neq K$ if the system is not at equilibrium.
The Equilibrium Constant, K_{eq}

- If the actual ratio of normalized concentrations (Q) equals K_{eq}, the reaction is at equilibrium.
- If Q does not equal K_{eq}, the reaction will proceed in the direction that causes Q to approach K_{eq}.
- Evaluation/use of K_{eq} requires knowledge of:
 - the chemical reaction (stoichiometry)
 - conventions for quantifying and normalizing the concentrations of the reactants and products
The Equilibrium Constant, K_{eq}

• Concentration Conventions
 – For species (e.g., Na$^+$, Cl$^-$) that are dissolved in a large amount of a bulk phase (e.g., water), concentrations are expressed in mol/L, and the normalizing concentration is 1.0 mol/L
 – For constituents that make up the bulk of a condensed phase (e.g., water, or a pure solid that has precipitated), concentrations are expressed in terms of the fraction of that phase that the species represents, and the normalizing concentration is a mole fraction of 1.0. This fraction is typically so close to 1.0 that we can use the approximation that the concentration is exactly 1.0.
 – For gases, the concentration are expressed in terms of the pressure that the species exerts, in atmospheres, and the normalizing concentration is 1.0 atm.
The Equilibrium Constant for Water Dissociation, K_w

\[\text{H}_2\text{O} \rightleftharpoons \text{H}^+ + \text{OH}^- \]

\[K_{eq} = \frac{(\text{H}^+)(\text{OH}^-)}{(\text{H}_2\text{O})} = \frac{(\text{H}^+)(\text{OH}^-)}{1.0} = 10^{-14.0} \equiv K_w \]

\[\text{pH} = -\log_{10}(\text{H}^+) \]
Some Important Equilibria in Water Treatment Involving Solids

- \(\text{CaCO}_3(s) \leftrightarrow \text{Ca}^{2+} + \text{CO}_3^{2-} \) Hardness
- \(\text{Mg(OH)}_2(s) \leftrightarrow \text{Mg}^{2+} + 2 \text{OH}^- \) Hardness
- \(\text{PbCO}_3(s) \leftrightarrow \text{Pb}^{2+} + \text{CO}_3^{2-} \) Lead & Copper Rule (LCR)
- \(\text{Cu(OH)}_2(s) \leftrightarrow \text{Cu}^{2+} + 2 \text{OH}^- \) LCR
- \(\text{Cu}_2(\text{OH})_2\text{CO}_3(s) \leftrightarrow 2\text{Cu}^{2+} + 2 \text{OH}^- + \text{CO}_3^{2-} \) LCR
- \(\text{Fe(OH)}_3(s) \leftrightarrow \text{Fe}^{3+} + 3 \text{OH}^- \) Coagulation
- \(\text{Al(OH)}_3(s) \leftrightarrow \text{Al}^{3+} + 3 \text{OH}^- \) Coagulation
- \(\text{SiO}_2(s) + 2 \text{H}_2\text{O} \leftrightarrow \text{H}_4\text{SiO}_4 \) Membrane fouling, Arsenic treatment
Equilibrium Constants Involving Solids

\[XY_2Z(s) \leftrightarrow X + 2Y + Z \]

\[K_{eq} = \frac{(X)(Y)^2(Z)}{(XY_2Z(s))} = \frac{(X)(Y)^2(Z)}{1.0} \equiv K_{sp} \text{ or } K_{so} \]

- “Solubility product” \((K_{sp} \text{ or } K_{so})\) is \(K_{eq}\) for dissolution of the solid into its constituents
- The solid (and sometimes H\(_2\)O) are the only chemicals on the left side
Some Solids are Very Soluble or Very Insoluble

- Some solids (e.g., NaCl, CaCl$_2$, Na$_2$SO$_4$) are so soluble under normal water treatment conditions that we never consider the possibility that the solid will be present in an equilibrium solution.

- Other solids (e.g., Fe(OH)$_3$, MnO$_2$) are so insoluble under normal water treatment conditions that we assume 100% of the metal precipitates.

- Some solids (CaCO$_3$) are “slightly soluble” under normal water treatment conditions, so neither assumption applies. Others (PbCO$_3$, AlPO$_4$) are very insoluble, but the trace amount that dissolves is still of concern.
Issues that Arise Regarding Slightly Soluble Solids in Water Treatment

• Is Q_{so} greater than, less than, or equal to K_{so} initially?

• How much does the concentration of some constituent have to change to cause Q_{so} to equal or exceed K_{so} (i.e., for precipitation to begin)?

• How much of some chemical must be added to cause Q_{so} to equal or exceed K_{so}?

• Will a solid precipitate if a specified amount of some chemical is added? If so, how much solid forms?

• If a solution with known composition comes into contact with a solid, how much solid will dissolve?
Example: Dissolution of Gypsum (CaSO$_4$(s))

- K_{so} for gypsum is $10^{-4.6}$
- 1.0 g of gypsum is dispersed in 1.0 L of water containing no Ca$^{2+}$ or SO$_4^{2-}$. How much solid (if any) remains after the system reaches equilibrium?
- Repeat the analysis if the solution initially contains 200 mg/L SO$_4^{2-}$.
Example: Dissolution of \(\text{CaSO}_4(s) \)

\[
K_{sp} = 10^{-4.6} = \frac{\left(\text{Ca}^{2+}\right)\left(\text{SO}_4^{2-}\right)}{\left(\text{CaSO}_4\ (s)\right)} = \frac{\left(\text{Ca}^{2+}\right)\left(\text{SO}_4^{2-}\right)}{1.0} = \left(\text{Ca}^{2+}\right)\left(\text{SO}_4^{2-}\right)
\]

\[
\left(\text{Ca}^{2+}\right) = \left(\text{SO}_4^{2-}\right)
\]

\[
10^{-4.6} = \left(\text{Ca}^{2+}\right)^2
\]

\[
\left(\text{Ca}^{2+}\right) = \left(10^{-4.6}\right)^{0.5} = 10^{-2.3} = 5.0 \times 10^{-3} = \left(\text{SO}_4^{2-}\right)
\]
Example: Dissolution of CaSO$_4$(s)

\[
(Ca^{2+}) = \left(10^{-2.3} \, \text{mol/L}\right) \left(40 \, \text{g/mol}\right) = 0.20 \, \text{g/L}
\]

\[
(SO_4^{2-}) = \left(10^{-2.3} \, \text{mol/L}\right) \left(96 \, \text{g/mol}\right) = 0.48 \, \text{g/L}
\]

CaSO$_4$(s) dissolved = 0.68 g/L

CaSO4(s) remaining undissolved = 0.32 g/L (32%)
Dissolution of CaSO$_4$(s) with (SO$_4^{2−}$)$_{\text{init}} > 0$

\[
\left(\text{SO}_4^{2−}\right)_{\text{init}} = \left(200 \frac{\text{mg}}{\text{L}}\right)\left(\frac{1 \text{ mol}}{96,000 \text{ mg}}\right) = 2.08 \times 10^{-3} \text{ mol L}^{-1}
\]

\[
K_{sp} = 10^{-4.6} = \left(\text{Ca}^{2+}\right)_{\text{final}} \left(\text{SO}_4^{2−}\right)_{\text{final}} = (x)\left(2.08 \times 10^{-3} + x\right)
\]

\[
x = 4.08 \times 10^{-3}
\]
Dissolution of CaSO$_4$(s) with (SO$_4^{2-}$)$_{\text{init}}>0$

\[
\begin{align*}
(Ca^{2+})_{\text{final}} &= x = 4.08 \times 10^{-3} \text{ mol} \left(\frac{40,000 \text{ mg}}{\text{mol}} \right) = 163 \text{ mg/L} \\
(SO_4^{2-})_{\text{final}} &= (x + 2.08 \times 10^{-3}) \text{ mol} \left(\frac{6.16 \times 10^{-3} \text{ mol}}{\text{L}} \right) \left(\frac{96,000 \text{ mg}}{\text{mol}} \right) = 591 \text{ mg/L}
\end{align*}
\]

CaSO$_4$(s) dissolved = 163 mg/L + (591 – 200)mg/L = 554 mg/L
CaSO$_4$(s) remaining undissolved = 446 mg/L (44.6%)
The Carbonate Chemical Group in Water

- **Dissolved Carbonate-containing species**
 - **Carbonic Acid: H\(_2\)CO\(_3\)**. Can form by combination of a carbon dioxide molecule and water:
 \[
 \text{CO}_2 + \text{H}_2\text{O} \leftrightarrow \text{H}_2\text{CO}_3
 \]
 \[
 K_{eq} = \frac{(\text{H}_2\text{CO}_3)}{(\text{CO}_2(\text{g}))} \frac{1}{(\text{H}_2\text{O})}
 \]
 - **Bicarbonate Ion: HCO\(_3^-\)**. Can form by “dissociation” of carbonic acid:
 \[
 \text{H}_2\text{CO}_3 \leftrightarrow \text{HCO}_3^- + \text{H}^+
 \]
 \[
 K_{eq} = \frac{(\text{HCO}_3^-)(\text{H}^+)}{(\text{H}_2\text{CO}_3)} \equiv K_{a1}
 \]
The Carbonate Chemical Group

• Dissolved Carbonate-containing species
 – **Carbonate Ion**: CO_3^{2-}. Can form by dissociation of bicarbonate ion:

 \[\text{HCO}_3^- \leftrightarrow \text{CO}_3^{2-} + \text{H}^+ \]

 \[K_{eq} = \frac{[\text{CO}_3^{2-}][\text{H}^+]}{[\text{HCO}_3^-]} \equiv K_{a2} \]

• Other Commonly Defined Quantities
 – **Total Dissolved Carbonate**: TOTCO_3

 \[\text{TOTCO}_3 = (\text{H}_2\text{CO}_3) + (\text{HCO}_3^-) + (\text{CO}_3^{2-}) + \text{[others?]} \]

 – **Alkalinity**: ALK

 \[\text{ALK} = (\text{HCO}_3^-) + 2(\text{CO}_3^{2-}) + (\text{OH}^-) - (\text{H}^+) \]
Units for Expressing Alkalinity

• **Equivalents:** One *equivalent* (equiv) of alkalinity refers to one mole of "H⁺ binding capacity."

 – one mole of HCO₃⁻ has the capacity to combine with one mole of H⁺, so one mole of HCO₃⁻ is one equivalent of alkalinity
 – one mole of CO₃²⁻ has the capacity to combine with two moles of H⁺, so one mole of CO₃²⁻ is two equivalents of alkalinity

• **mg/L as CaCO₃:** The number of mg/L of CaCO₃ that would have to be dissolved into pure water for that water to have the same alkalinity as the water of interest

 – one mole of CaCO₃ can combine with two moles of H⁺, so one mole of CaCO₃ is two equivalents of alkalinity
 – the MW of CaCO₃ is 100, so 50 g of CaCO₃ is one equivalent. An alkalinity of 75 mg/L as CaCO₃ is therefore identical to 1.5 meq/L
Equilibrium Among Dissolved Carbonate Species

The graph shows the distribution of carbonate species with pH. The x-axis represents pH ranging from 2 to 12, and the y-axis represents the concentration of each species relative to the total carbonate concentration (Conc'n / TOTCO₃).

Key species concentrations are:
- $\text{H}_2\text{CO}_3 / \text{TOTCO}_3$
- $\text{HCO}_3^- / \text{TOTCO}_3$
- $\text{CO}_3^{2-} / \text{TOTCO}_3$

The graph indicates that H_2CO_3 and CO_3^{2-} peaks at low pH values, while HCO_3^- dominates at pH around 8.
Other Types of Precipitation & Dissolution Problems

• In preceding example (precipitation of CaSO$_4$(s)), $\text{TOTCa} \& \text{TOTS}\text{SO}_4$ varied due to solid precipitation, but under all conditions, $\text{TOTCa}=(\text{Ca}^{2+})$ and $\text{TOTS}\text{SO}_4=(\text{SO}_4^{2-}).$

• In other commonly encountered systems, the concentration of one or both precipitating ions depends not only on the amount of solid formed, but also other variables (especially pH).
Example: Precipitation & Dissolution of a Hydroxide Solid

- Industrial waste solution, flow rate 150 L/min, pH 2.0, 10^{-2} M Zn$^{2+}$

- Treatment goal: Reduce conc’n of Zn$^{2+}$ to 0.1 mg/L by precipitating Zn(OH)$_2$(s), $K_{s0} = 10^{-13.5}$

- Questions
 - pH to achieve treatment goal?
 - Dose of NaOH required, if the only reactions involving OH$^{-}$ are formation of water and solids?
 - Production rate (kg/d) of solid?
\[
(Zn^{2+})_{\text{fin}} = \frac{0.1 \text{ mg/L}}{65,400 \text{ mg/mol}} = 1.53 \times 10^{-6} \text{ mol/L}
\]

\[
K_{s0} = \frac{(Zn^{2+})_{\text{fin}} (OH^-)^2}{(Zn(OH)_2 (s))} = (Zn^{2+})_{\text{fin}} (OH^-)^2
\]

\[
(OH^-)_{\text{fin}} = \sqrt{\frac{K_{s0}}{(Zn^{2+})_{\text{fin}}}} = \sqrt{\frac{10^{-13.5}}{1.53 \times 10^{-6}}} = 1.44 \times 10^{-4}
\]

\[
(H^+)_{\text{fin}} = \frac{K_w}{(OH^-)_{\text{fin}}} = \frac{10^{-14.0}}{1.44 \times 10^{-4}} = 6.95 \times 10^{-11}
\]

\[\text{pH} = 10.16\]
Dose of NaOH Required

- **Reactions**
 - \[\text{H}^+ + \text{OH}^- \leftrightarrow \text{H}_2\text{O} \]
 - \[\text{Zn}^{2+} + 2\text{OH}^- \leftrightarrow \text{Zn(OH)}_2(\text{s}) \]

- **Conc’n changes during treatment**
 - \((\text{H}^+) \) decreases from \(10^{-2} \) to \(10^{-10.16} \); requires \(10^{-2} \) mol/L OH\(^-\)
 - \((\text{OH}^-) \) increases from \(10^{-12} \) to \(10^{-3.84} \); requires \(10^{-3.84} \) mol/L OH\(^-\)
 - \(\text{Zn(OH)}_2(\text{s}) \) formation consumes two OH\(^-\) per \(\text{Zn}^{2+} \) ion precipitated; requires \(2 \times 10^{-2} \) mol/L OH\(^-\)

- **Total OH\(^-\) Req’t = 3.01 \times 10^{-2} \) mol/L OH\(^-\)**
Production Rate of Zn(OH)$_2$(s)

- Conc’n of Zn(OH)$_2$(s) precipitated $\approx 10^{-2}$ mol/L
- MW of Zn(OH)$_2$(s): $65.4 + 17\times2 = 99.4$

\[
\text{Zn}(\text{OH})_2(\text{s}) \text{ formed} = \left(654 \frac{\text{mg Zn removed}}{\text{L}}\right) \left(\frac{99.4 \text{ mg Zn(OH)$_2$(s)}}{65.4 \text{ mg Zn}}\right) = 994 \frac{\text{mg Zn(OH)$_2$(s)}}{\text{L of water}}
\]

Rate of Zn(OH)$_2$(s) production

\[
= \left(994 \frac{\text{mg Zn(OH)$_2$(s)}}{\text{L of water}}\right) \left(150 \frac{\text{L}}{\text{min}}\right) \left(1440 \frac{\text{min}}{\text{d}}\right) \left(\frac{1 \text{ kg}}{10^6 \text{ mg}}\right) = 215 \frac{\text{kg Zn(OH)$_2$(s)}}{\text{d}}
\]
Example: Precipitation & Dissolution of a Phosphate Solid

- Drinking water at pH 8.0 contains 3.22×10^{-6} mol/L $TOTPO_4$ (0.1 mg/L $TOTPO_4$-P); Corrosion of galvanized pipe releases Zn$^{2+}$

- $TOTPO_4$ distributed among four $H_xPO_4^{x-3}$ species:
 - $H_3PO_4 \leftrightarrow H_2PO_4^- + H^+$, $K_{a1}=10^{-2.2}$
 - $H_2PO_4^- \leftrightarrow HPO_4^{2-} + H^+$, $K_{a2}=10^{-7.2}$
 - $HPO_4^{2-} \leftrightarrow PO_4^{3-} + H^+$, $K_{a3}=10^{-12.4}$

- Question: What is the maximum concentration of Zn$^{2+}$ that can be dissolved in solution, considering possible precipitation of $Zn_3(PO_4)_2(s)$ ($K_{s0}=10^{-36.7}$)
\[K_{a1} = \frac{[H_2PO_4^-][H^+]}{[H_3PO_4]} = 10^{-2.2} \]

\[K_{a2} = \frac{[HPO_4^{2-}][H^+]}{[H_2PO_4^-]} = 10^{-7.2} \]

\[K_{a3} = \frac{[PO_4^{3-}][H^+]}{[HPO_4^{2-}]} = 10^{-12.4} \]

\[K_{a2}K_{a3} = \frac{[PO_4^{3-}][H^+]^2}{[H_2PO_4^-]} = 10^{-19.6} \]

\[K_{a1}K_{a2}K_{a3} = \frac{[PO_4^{3-}][H^+]^3}{[H_3PO_4]} = 10^{-21.8} \]

\[[HPO_4^{2-}] = 10^{12.4} [PO_4^{3-}][H^+] = 10^{4.4} [PO_4^{3-}] \]

\[[H_2PO_4^-] = 10^{19.6} [PO_4^{3-}][H^+]^2 = 10^{3.6} [PO_4^{3-}] \]

\[[H_3PO_4] = 10^{21.8} [PO_4^{3-}][H^+]^3 = 10^{-2.2} [PO_4^{3-}] \]
\[TO \text{TPO}_4 = (H_3\text{PO}_4) + (H_2\text{PO}_4^-) + (\text{HPO}_4^{2-}) + (\text{PO}_4^{3-}) \]
\[= 10^{-2.2} (\text{PO}_4^{3-}) + 10^{3.6} (\text{PO}_4^{3-}) + 10^{4.4} (\text{PO}_4^{3-}) + (\text{PO}_4^{3-}) \]
\[= 2.91 \times 10^4 (\text{PO}_4^{3-}) \]

\[(\text{PO}_4^{3-}) = \frac{3.22 \times 10^{-6}}{2.91 \times 10^4} = 1.11 \times 10^{-10} \]

\[(\text{Zn}^{2+}) = \left[\frac{K_{s0}}{\left(\text{PO}_4^{3-}\right)^2} \right]^{1/3} = \left[\frac{10^{-36.7}}{(1.11 \times 10^{-10})^2} \right]^{1/3} = 2.56 \times 10^{-6} \]
Example: Water Softening

• Drinking water at pH 7.0 contains 3×10^{-3} mol/L Ca$^{2+}$ (120 mg/L), and 1.0×10^{-3} Alk; K_{s0} for CaCO$_3$(s) is $10^{-8.3}$

• Questions
 – Is the solution supersaturated, undersaturated, or at equilibrium with respect to CaCO$_3$(s)?
 – What is the stoichiometric dose of lime (Ca(OH)$_2$) required to convert H$_2$CO$_3$ and HCO$_3^-$ to CO$_3^{2-}$?
 – If TOTCO$_3$ is essentially all converted to CO$_3^{2-}$, will CaCO$_3$(s) precipitate? If so, how much, and what will the final concentration of Ca$^{2+}$ be?
Determine $TOTCO_3$ and Distribution of Carbonate Species

\[
ALK = \left(HCO_3^- \right) + 2 \left(CO_3^{2-} \right) + \left(OH^- \right) - \left(H^+ \right)
\]

\[
1.0 \times 10^{-3} = \left(HCO_3^- \right) + 2 \frac{\left(HCO_3^- \right) K_{a2}}{\left(H^+ \right)} + \frac{K_w}{\left(H^+ \right)} - \left(H^+ \right)
\]

\[
1.0 \times 10^{-3} = \left(HCO_3^- \right) + 2 \frac{\left(HCO_3^- \right) 10^{-10.3}}{10^{-7.0}} + \frac{10^{-14.0}}{10^{-7.0}} - 10^{-7.0}
\]

\[
1.0 \times 10^{-3} = 1.001 \left(HCO_3^- \right)
\]

\[
\left(HCO_3^- \right) = \frac{1.0 \times 10^{-3}}{1.001} \approx 1.0 \times 10^{-3}
\]
Determine TOTCO_3 and Distribution of Carbonate Species

\[
\left(\text{CO}_3^-\right) = \frac{\left(\text{HCO}_3^-\right) K_{a2}}{\left(\text{H}^+\right)} = \frac{10^{-3.0} \times 10^{-10.3}}{10^{-7.0}} = 10^{-6.3}
\]

\[
\left(\text{H}_2\text{CO}_3\right) = \frac{\left(\text{HCO}_3^-\right) \left(\text{H}^+\right)}{K_{a1}} = \frac{10^{-3.0} \times 10^{-7.0}}{10^{-6.3}} = 10^{-3.7} = 2 \times 10^{-4}
\]

\[
\text{TOTCO}_3 = \left(\text{H}_2\text{CO}_3\right) + \left(\text{HCO}_3^-\right) + \left(\text{CO}_3^{2-}\right)
\]

\[
= 2.0 \times 10^{-4} + 1.0 \times 10^{-3} + 5 \times 10^{-7} = 1.2 \times 10^{-3}
\]

\[
\left(\text{Ca}^{2+}\right)\left(\text{CO}_3^{2-}\right) = \left(3 \times 10^{-3}\right)\left(10^{-6.3}\right) = 10^{-8.8} < K_{s0}
\]

Thus, CaCO$_3$(s) is undersaturated in the initial solution.
Determine Stoichiometric Dose of Lime

\[
\text{HCO}_3^- + \text{OH}^- \leftrightarrow \text{CO}_3^{2-} + \text{H}_2\text{O} \quad \text{H}_2\text{CO}_3 + 2\text{OH}^- \leftrightarrow \text{CO}_3^{2-} + 2\text{H}_2\text{O}
\]

\[
\left(\text{Moles of OH}^- \text{ required to cause } \left(\text{CO}_3^{2-}\right) \approx \text{TOTCO}_3\right) = 2\left(\text{H}_2\text{CO}_3\right) + \left(\text{HCO}_3^-\right)
\]

\[
\left(\text{Moles of lime required to cause } \left(\text{CO}_3^{2-}\right) \approx \text{TOTCO}_3\right) = \frac{1}{2} \left(\text{Moles of OH}^- \text{ required to cause } \left(\text{CO}_3^{2-}\right) \approx \text{TOTCO}_3\right)
\]

\[
\left(\text{Lime required to cause } \left(\text{CO}_3^{2-}\right) \approx \text{TOTCO}_3\right) = \left(\text{H}_2\text{CO}_3\right) + \frac{1}{2} \left(\text{HCO}_3^-\right) = 2.0 \times 10^{-4} + \frac{1}{2} \left(1.0 \times 10^{-3}\right) = 7.0 \times 10^{-4}
\]
After Dosing with Lime, the Solution is Supersaturated

\[TOT \text{CO}_3 = 1.2 \times 10^{-3} \approx \left(\text{CO}_3^{2-} \right) \]

\[
\left(\text{Ca}^{2+} \right) = \left(\text{Ca}^{2+} \right)_{\text{init}} + \left(\text{Ca}^{2+} \right)_{\text{lime}} = 3.0 \times 10^{-3} + 7.0 \times 10^{-4} = 3.7 \times 10^{-3}
\]

\[
\left(\text{Ca}^{2+} \right) \left(\text{CO}_3^{2-} \right) = \left(3.7 \times 10^{-3}\right) \left(1.2 \times 10^{-3}\right) = 4.44 \times 10^{-6} = 10^{-5.35} > K_{s0}
\]
Determine How Much Solid Will Precipitate

If \(x \) is the amount (moles/L) of \(\text{CaCO}_3(s) \) that precipitates, the concentrations of \(\text{TOTCa} \) and \(\text{TOTCO}_3 \) in solution will each decrease by \(x \). If \((\text{CO}_3^{2-}) \approx \text{TOTCO}_3 \) after precipitation (i.e., if the pH is \(>\approx10.8 \)), then \(x \) is also the decrease in \((\text{CO}_3^{2-}) \). In such a case, we can write:

\[
K_{s0} = \left(\text{Ca}^{2+} \right)_{\text{equil}} \left(\text{CO}_3^{2-} \right)_{\text{equil}} = \left[\left(\text{Ca}^{2+} \right)_{\text{init}} - x \right] \left[\left(\text{CO}_3^{2-} \right)_{\text{init}} - x \right]
\]

\[
10^{-8.3} = \left(3.7 \times 10^{-3} - x \right) \left(1.2 \times 10^{-3} - x \right)
\]

\[
x = 1.198 \times 10^{-3}
\]

Precipitation removes 99.8% of \(\text{TOTCO}_3 \) but only 17% of \(\text{TOTCa} \).
Determine How Much Soda Ash to Add

To remove more Ca$^{2+}$, we must add more $TOTCO_3$. A frequently cited, but somewhat outdated rule of thumb is to add Na$_2$CO$_3$ to make $TOTCa=TOTCO_3$. If that is done:

\[
(\text{Na}_2\text{CO}_3)_{dose} = TOTCa - TOTCO_3,\text{init} = \\
= 3.7 \times 10^{-3} - 1.2 \times 10^{-3} = 2.5 \times 10^{-3}
\]

Then, when the solution equilibrates with the solid:

\[
\left(\text{Ca}^{2+}\right)\left(\text{CO}_3^{2-}\right) = \left(\text{Ca}^{2+}\right)^2 = 10^{-8.3}
\]

\[
\left(\text{Ca}^{2+}\right) = \sqrt{10^{-8.3}} = 10^{-4.15} = 7.1 \times 10^{-5} = 2.8 \text{ mg/L}
\]

This Ca$^{2+}$ concentration is very low. Since Na$_2$CO$_3$ is expensive, the actual dose is usually less than the dose based on the rule of thumb.
Calcium Carbonate Precipitation as a Corrosion Inhibitor

Water quality is sometimes adjusted so that CaCO₃ is slightly supersaturated in the water leaving the WTP. Ideally, a thin layer of the solid forms and coats the pipes, limiting access of the corrosive water to the pipe surface. However, if this process is not controlled carefully, the CaCO₃ layer can get so thick that it impedes flow.

(See picture from Opflow 2003-09 corrosion scales headloss.pdf)