Types of Water Resource Systems

· Water Use

- Provide specified level of service to meet societal need
- Capacity dictated by population of service area, commercial and industrial requirements, economic design life of system

Examples

- · Domestic and industrial water supply
- · Institutional (hospitals, schools, etc.)
- · Recreational (parks, golf courses)
- · Fire control
- · Wastewater collection/treatment
- Irrigation
- Hydropower generation
- In-stream flows for habitat preservation/restoration
- · Leaks (not a use, but a demand that must be considered)

Types of Water Resource Systems

- · Water Control
 - Control spatial and temporal distribution of surface runoff (i.e., flooding)
 - Capacity dictated by natural variation in flow combined with human alteration of environment and consequences of failure
 - Examples
 - · Storm sewers
 - · Detention ponds and flood-control reservoirs

Design of Water Resource Systems

- Always Related to Perceived Risk, Quantified in Terms of Annual Probability or "Return Period" (1/Frequency) of Failure
 - Frequency-based
 - · Return period of event to be protected against is chosen a priori · Generally applied to minor structures with low costs for failure
 - Risk-based
 - Design based on attempt to minimize total costs (capital plus cost of failure x probability of failure)
 Generally applied to larger structures with high costs for failure (human injury or death, substantial societal or ecosystem disruption)
 - Critical-event-based · Design attempts to avoid specified event, regardless of return period or cost
 - · Applied to cases where failure would be truly catastrophic

Type of Structure	Return Period (Years)	ELV
Highway culverts		
Low traffic	5-10	_
Intermediate traffic	10-25	_
High traffic	50-100	_
Highway bridges		
Secondary system	10-50	
Primary system	50-100	_
Farm drainage	00-100	_
Culverts	5.50	
Ditches	5-50	
Urban drainage		
Storm sewers in small cities	2-25	_
Storm sewers in large cities	25-50	_
Airfields		
Low traffic	5-10	
Intermediate traffic	10-25	_
High traffic	50-100	-
Levees	11 110	
On farms	2-50	
Around cities	50-200	_
Dams with no likelihood of	50-200	-
loss of life (low hazard)		
Small dams	50-100	
Intermediate dams	100 +	
Large dams	_	50-100%
Dams with probable loss of life		20-10036
(significant hazard)		
Small dams	100 +	\$0%
Intermediate dams	_	50-100%
Large dams	_	1005
Dams with high likelihood of considerable		100/30
loss of life (high hazard)		
Small dams	_	50-1005
Intermediate dams		100%
Large dams	_	1000

Design for Public Water-Supply

- Estimate Average Daily Demand (ADD)
 - Project population or land-use for specified time horizon (usually done by urban or regional planners, not engineers, these days)
 - Estimate demand for projected conditions · Population-based: Vol/person-d (e.g., gpcd or Equivalent
 - Residential Units [ERUs]) · Land-use-based: Vol/area-d (e.g. gal/acre-d or ERUs); estimates available for low-, medium-, or high-density residential; office commercial; retail; heavy industrial; schools; etc.
 - · Usage-unit-based: e.g., Vol/unit-d (e.g., gal/passenger-d for airports; gal/room-d for hotels; or ERUs)

Method	Formula	Definition of Terms	Constant Formulation
Arithmetic	$P_n = P_2 + k_a(t_n - t_2)$	P = population t = time $k_a =$ arithmetic growth rate	$k_{x} = \frac{P_{2} - P_{1}}{t_{2} - t_{1}}$
Geometric	$\log P_n = \log P_2 + k_g(t_n - t_2)$	$k_g =$ geometric growth rate	$k_g = \frac{\ln P_2 - \ln P_1}{t_2 - t_1}$
Decreasing rate of increase	$P_2 - P_1 = (S - P_1)(1 - e^{-i_d(t_2 - t_1)})$	S = saturation population k_d = decreasing rate of increase constant	$k_d = \frac{-\ln[(S - P_2)/(S - P_1)]}{t_2 - t_1}$
Logistic (simplified)	$P = \frac{S}{1 + me^{3\epsilon}}$	$m, b = \text{constants}$ $P_0, P_1, P_2 = \text{population at}$ times l_0, l_1, l_2 $n = \text{interval between}$ l_0, l_1, l_2	$S = \frac{2P_0P_1P_2 - P_1^2(P_0 + I)}{P_0P_2 - P_1^2}$ $m = \frac{S - P_0}{P_0}$ $b = \frac{1}{n} \ln \frac{P_0(S - P_1)}{P_0(S - P_0)}$

Consumption lpcd gpcd lpcd gp Domestic or residential 76–340 20–90 208 2 Commercial 38–492 10–130 76 2	cd
Domestic or 76–340 20–90 208 2000	
residential 76–340 20–90 208 Commercial 38–492 10–130 76	
Commercial 38–492 10–130 76	55
Industrial 76 202 20 00 100	20
Industrial /6-303 20-80 189	50
Public 19–76 5–20 38	10
Water unaccounted	
for 19-114 5-30 57	15
227–946 60–250 568 1	50

	Number of Persons		
Area Type	Per Hectare	Per Acre	
Residential, single-family			
units	12-86	5-35	
Residential, multiple-family			
units	74-247	30-100	
Apartments	247-2470	100-1000	
Commercial areas	37-74	15-30	
Industrial areas	12-34	5-15	
Total, exclusive of parks, playgrounds and other			
large greenbelt areas	25-124	10 - 50	

Туре	Unit	Average Use	Peak Use
Hotels	Liter/day/square meter	10.4	17.6
Motels	Liter/day/square meter	9.1	63.1
Barber shops	Liter/day/barber chair	207	1,470
Beauty shops	Liter/day/station	1,020	4,050
Restaurants	Liter/day/seat	91.6	632.0
Night clubs	Liter/day/person served	5	5
Hospitals	Liter/day/bed	1,310	3,450
Nursing homes	Liter/day/bed	503	1,600
Medical offices	Liter/day/square meter	25.2	202
Laundy	Liter/day/square meter	10.3	63.9
Laundromats	Liter/day/square meter	88.4	265.0
Retail space	Liter/day/sales square meter	4.3	11
Elementary schools	Liter/day/student	20.4	186
High schools	Liter/day/student	25.1	458
Bus-rail depot	Liter/day/square meter	136	1,020
Car washes	Liter/day/inside square meter	194.7	1,280
Churches	Liter/day/member	0.5	17.8
Golf-swim clubs	Liter/day/member	117	84
Bowling alleys	Liter/day/alley	503	503
Residential colleges	Liter/day/student	401	946
New office buildings	Liter/day/square meter	3.8	21.2

Add'1 ADD = (800)(2300) + (200)(4160) + (100)(2030)

(50)(2040) + (10)(1620) + (10,000)(4) + (2)(2020)

$= 3.04 \times 10^{6} \text{ gal/d} = 3.04 \text{ mgd}$

where Q is discharge while meeting minimum pressure requirements, and P is population in thousands. Estimate the incremental fire-flow requirement and explore how the population increase could affect the required system hydraulic capacity, assuming MDD/ADD is 1.5 and PHD/ADD is 2.5.

Example

Population increase is from 50,000 to 75,000, so:

 $Q_{fire,1} = (1020 \text{ gpm})(\sqrt{50} - 0.01(50)) = 6702 \text{ gpm}$

 $Q_{fire,2} = (1020 \text{ gpm})(\sqrt{75} - 0.01(75)) = 8068 \text{ gpm}$

- $\Delta\,\text{Q}_{\textit{fire}}=1366~\text{gpm}=1.97~\text{m}\,\text{gd}$
- Design flow for system hydraulics is MDD+Fire-flow or PHD, whichever is greater.

 $\Delta MDD + \Delta Q_{fire} = (1.5 * 3.04 + 1.97) mgd = 6.53 mgd$

$\Delta PHD = (2.5*3.04)mgd = 7.60 mgd$

 The increase in PHD is greater than the increase in MDD+fire-flow. These would have to be added to the values for the base condition to determine which one controls the new system hydraulic design.

Meeting Unsteady Demand with a Steady Supply

- Withdrawals from source and treatment processes often operate best if flow is steady
- Demand for water varies during a day and seasonally
 Matching inflow to outflow, when one or both are variable
- and/or uncertain, arises in many contexts - Water supply on daily or seasonal scale (distribution or service
 - Water supply on daily or seasonal scale (distribution or service reservoir)
 - Storm water mgmt to reduce flooding and improve water quality of discharge (detention basin)
 - Drought mitigation over months to years (impounding or water supply reservoir)
 - Balancing wastewater flows to facilitate smooth operation of treatment processes (equalization basin, or in-pipe equalization)
 - Intermittent, steady pumping at a sewage pump station

Sizing a Water Distribution Reservoir

- Choose a demand scenario to be met, based on prior knowledge and cost of failure (e.g., highest demand day on record; probabilistic projection of demand expected no more than once per year)
- · Compute supply scenario that meets average demand
- Compute withdrawal from or input to storage during each time increment for design scenario
- · Plot cumulative supply and demand
- Sum of largest cumulative excess (supply minus demand) and largest cumulative shortfall is required capacity
- Add any capacity not previously considered fire-flow requirements, unused or inaccessible storage, safety factor, etc.

Example

 A water supply is to be developed for a new community, with an anticipated ultimate population of 50,000. Based on the pattern in a similar, existing community and an ADD (including commercial demand) of 0.643 m³/person-d (170 gpcd), the following hourly demand pattern has been chosen as the basis for design. Determine the required storage capacity for continuous pumping and for pumping only 8am-8pm. Assume that 6% of the stored water will be unavailable, and consider fire-flow needs.

TIME	Inst.Demand m³/min	TIME	Inst.Demand m³/min	TIME	Inst.Demand m ³ /min
1	5.2	9	25.0	17	32.0
2	4.0	10	18.0	18	35.0
3	3.5	11	20.0	19	39.5
4	4.0	12	21.0	20	33.0
5	7.0	13	25.0	21	33.0
6	26.0	14	23.0	22	40.0
7	31.0	15	21.0	23	32.0
8	36.0	16	27.0	24	17.0

- Fire hydrants Service connections Meters
- Distribution factors affecting grid configuration Topography and street patterns Locations of water treatment system and potential storage Grid allows supply to come from more than one direction Identify pressure zones to avoid high and low pressures

Hydraulic Design

- 1. Develop spatial distribution of demand, based on population density, commercial/ industrial use, etc.
- 2. Evaluate critical demand scenarios Fire plus MDD Peak hourly demand
- 3. Layout pipe grid Select length and pipe sizes Propose pump locations Identify storage needs
- Evaluate flow and pressure throughout system Main feeders at 40-75 psi Minimum pressure of 30 psi anywhere; residential 40-50 psi Velocity 3-5 fps
- 5. Compare capital (pipes, pumps, storage) and operating (pumping) costs

Pipe Network Analysis

- 1. Equivalent pipe approach
 - Applicable for pipes in simple parallel or series arrangements, with no inputs/withdrawals or pumps in middle;
 - Identifies characteristics of a single pipe with same hydraulic properties (h_L vs Q relationship) as the pipes of interest
 - Applicable if h_L depends only on Q, D, and L
 - For a given set of real pipes, an equivalent pipe with some D exists for each L, and vice versa

Example

Replace the loop below with a single, equivalent 20" pipe; assume headloss is given by the Hazen-Williams eqn with C = 100– Assume $Q_{BCD}=8$ ft³/s. Applying H-W, we find $S_{BC}= 0.0061$ and $S_{CD}= 0.011$

 $h_{L,BCD} = h_{L,BC} + h_{L,CD} = (200')(0.0061) + (500')(0.011) = 6.72'$

– Identify a single pipe equivalent to *BCD*; Arbitrarily, choose *D*=12" for this pipe. For this diameter and *Q*=8 ft³/s, H-W indicates *S*=0.045, so *L* required to have same h_L as the real pipes *BCD* is:

