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CEE 345 Part 2, Assignment #2 Solutions 

1. Determination of the flow rates in the various pipes requires that we start with a guesses for those flow 
rates that meet the continuity criterion. We then use the Hazen-Williams equation to compute the 
headloss in each pipe, determine the apparent headloss around each loop, and follow the algorithm given 
in class to improve the guessed values of Q until h around each loop is zero. In these iterations, n is the 
exponent on Q in the H-W equation (1.85), and K is the value of the coefficient in the expression hL

 = 
KQn. K is a composite parameter that is constant for a given pipe but differs from one pipe to the next. 
Its calculation depends on a numerical constant and the known values of the pipe diameter, length, and 
H-W friction coefficient (CH-W, which is more properly thought of as a conductivity coefficient). My 
results after several iterations, once the corrections to Q have become small, are shown below.  

   Given  Given  Coef.  Assumed HW eqn      

Pipe  D (ft)  length (ft)  C_HW  Q (ft3/s)  hL (ft)  hL/Q  Q 

ab  1.5  1000 90  3.7320 1.820  0.488    

be  1.33  800 100  0.2816 0.018  0.063    

ei  1.5  800 100  ‐4.0395 ‐1.387  0.343    

ih  2  1000 90  ‐6.2680 ‐1.170  0.187    

ha  2  1600 90  3.7320 0.717  0.192    

    SUM  ‐0.002  1.273  0.0008 

              

bc  1.5  500 90  ‐0.7304 ‐0.045  0.061    

cf  1.33  800 100  2.2696 0.847  0.373    

fe  1  500 100  ‐1.3211 ‐0.790  0.598    

eb  1.33  800 100  ‐0.2816 ‐0.018  0.063    

   SUM  ‐0.005  1.096  0.0025 

              

cd  1.5  500 90  1.1808 0.108  0.092    

dg  1.33  800 90  ‐0.8192 ‐0.156  0.191    

gf  1  500 100  1.4093 0.890  0.632    

fc  1.33  800 100  ‐2.2696 ‐0.847  0.373    

  SUM  ‐0.005  1.287  0.0021 

ef  1  500 100  1.3211 0.790  0.598    

fg  1  500 100  ‐1.4093 ‐0.890  0.632    

gj  1.5  800 90  ‐2.2285 ‐0.561  0.252    

ji  2  1000 90  ‐0.9605 ‐0.036  0.038    

ie  1.5  800 100  2.7715 0.691  0.249    

SUM  ‐0.007  1.768  0.0020 

 

The headloss between points a and j can be computed by adding the headlosses in any group of pipes 
connecting those points. Adding the headlosses in pipes ah, hi, and ij, we find: 
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2. (a) The energy equation written between the surface of the reservoir and the outlet is: 
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where the final equality on the right applies because minor losses are negligible, so the headloss can be 
computed using the D-W equation. The outlet is 3 m below the reservoir surface, and V2, l, D, and V are 
given, so the only unknown on the right side of the equation is the friction factor. The friction factor can 
then be computed from the Moody diagram or an equivalent equation, based on the Reynolds number 
and the fact that the pipe is smooth: 
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Substituting all the known values into the equation for the head that must be added by the pump, we 
find: 
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The fluid power and shaft power can then be determined as: 
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Because the pump is only 70% efficient, the power that must be provided to the shaft is: 
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(b) The NPSHA is computed as: 
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Defining the elevation of the suction as the datum elevation, the energy equation written between the 
reservoir surface and the pump suction (using absolute pressures) is: 
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Substituting this expression into that for NPSHA, we obtain: 

 atm
A 1NPSH vaporpp

z
 
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The vapor pressure and specific weight of water at 40oC are given in the tables at the back of the book as 
7.376 kN/m2 and 9.731 kN/m3, respectively, and normal atmospheric pressure is 101 kPa (101 kN/m2). 
Substituting these values, we find: 

 
2 2

A 3 3

101 kN/m 7.376 kN/m
NPSH 3 m 12.6 m

9.731 kN/m 9.731 kN/m
     

3. The energy equation written between the surfaces of the two reservoirs is: 
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The downstream reservoir surface is 30 ft higher than the upstream reservoir surface, so: 

 30 ftpump Lh h   

The headlosses are all multiples of the velocity head, with the multiplier being fl/D for the major (pipe 
friction) headloss, and the minor loss coefficient for the various fittings and valves. The flow velocity 
can be expressed as a function of Q by: 
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Inserting all this information into the expression for hpump, we obtain: 
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This equation can be solved to find hL corresponding to various values of Q. After converting the Q 
values to gpm units, the results can be plotted to show the system curve on the same graph as the pump 
curve (shown below). The intersection of the two curves establishes the operating point, which is at Q = 
1740 gpm; h = 61.0 ft. 
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4. When the system is operating steadily, the flow rate through the pump (and therefore the total flow 
through the two pipes) will be such that the head added by the pump exactly equals the head required to 
push the water through the system. The relationship between the flow through the pump and the head 
that the pump adds to the fluid is given by the pump performance curve, which can be plotted from the 
given data. The relationship between the flow rate and the head required to generate that flow rate, on 
the other hand, is given by the system curve, which we have to derive based on the system geometry. 

For this particular system geometry, the inlet to the two pipes is the same, so their heads are the same at 
that point. Their outlet locations are different, so they do not have the same headloss, but we do know 
the conditions at each outlet, so we can find the flow through each pipe as a function of the head added 
by the pump, using the energy equation independently for each pipe. Thus, assuming that minor 
headlosses are negligible, we can write the energy equation between reservoirs A and B as: 
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Analogous calculations for the flow in pipe 2 yield: 
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For any operating scenario, hadded must be the same for both pipes. Therefore, we can pick an arbitrary 
value of hadded, solve the two equations for Q1 and Q2, and add the two flow rates to obtain the total flow, 
Qtot. We can then repeat that process for various values of hadded to develop a curve of hadded vs. Qtot, i.e., 
the system curve. (Note that, for hadded values <10 ft and <30 ft, there is not enough head being added to 
generate any flow through pipes 1 and 2, respectively, so we assign Q = 0 for those scenarios.) 

An alternative to numerical calculation of the system curve is to just plot the two ‘sub-system curves’ 
(i.e., hadded vs. Q1 and hadded vs. Q2), and add them graphically. To do that, first plot the two curves. 
Then, because the addition has to be under conditions where the same value of hadded applies to both, we 
choose a value of hadded, read Q1 and Q2 from the graph, compute Qtot as Q1

 + Q2, and plot a point for the 
total system curve at (hadded, Qtot). Repeating the process for several points yields the desired curve. The 
curve generated using either approach is shown along with the pump curve in the following plot. 
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The operating point is at a flow rate of 25.7 cfs, with 70 ft of head added by the pump. 


