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SOME DEFINITIONS FOR FLUID FLOW; 
REYNOLDS TRANSPORT THEOREM; CONTINUITY 

Definitions of a few terms that are used when quantifying flows: 

• Mass flow rate ( m , mass/time), volumetric flow rate (Q, volume/time), and weight flow 

rate ( w
•

, weight/time). These quantities are related by: m Qρ
•

= , w g m g Qρ
• •

= = . 

Although we frequently treat these quantities as scalars describing the magnitude of the 
flow rate in the direction of bulk flow, they really are vectors. In some cases, we might be 
interested in the rate at which a fluid crosses a specified surface (e.g., a control surface) 
that is not perpendicular to the bulk flow. In that case, the velocity vector can be 
decomposed into components parallel to and perpendicular to the surface. The volumetric 
and mass flow rates across the surface can then be computed based solely on the 
perpendicular component of the velocity: 

costot tot totQ V A Aθ= = • = •V A V n  (1) 

costot tot totm V A Aρ θ ρ ρ
•

= = • = •V A V n  (2) 

where the area vector, A , is defined to have the same magnitude as the total area of 
interest (i.e., the area through which the flow of interest occurs) and a direction that is 
perpendicular to that area, and θ is the angle formed by the velocity and area vectors. 
Note that, if θ = 0o, cos θ = 1, and Q = VtotAtot, and if θ = 90o, cos θ = 0, and Q = 0. n  is a 
unit vector (magnitude equal to 1.0) with the same direction as A , so that totA =n A . 

• Mean velocity, V: the velocity that, if applied over the entire cross-section of flow, would 
yield the same resultant flow rate as the actual flow. Thus: 

tot tot

vdAQV
A A

≡ = ∫  (3) 

The idea is that we move around the area of interest, compute v dA (= dQ) in each 
differential unit of area, add up all those terms to find Q, and divide by Atot to find the 
mean velocity, V. Note that the averaging is based on flow (the product of velocity and 
area), not on velocity or area alone. For example, if the water velocity in one half of a 
channel is 10 m/s and that in the other half is 20 m/s, the mean velocity is not 15 m/s, but 
faster, because twice as much water is flowing at 20 m/s as at 10 m/s. (The mean velocity 
would therefore be 16.67 m/s, meaning that the total flow through the channel is the same 
as if the velocity were that value everywhere.) 

Example. The velocity profile in a circular tube with laminar flow is parabolic and is 
characterized by the following equation characterizing and schematic. Compute the mean 
velocity in such a tube. 
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( )
2

max 21 rv r v
R

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 (4) 

 

Solution. Define R as the radius of the tube, r as the distance from the center, and v(r), as 
the velocity at r, and vmax as the velocity at the center of the tube (equal to v(0)). The 
mean velocity can therefore be computed based on Equation 3 as: 

( )
2

max 2
0

1 2
R

tot

rvv r dA
R

V
A

π
⎡ ⎤⎛ ⎞

−⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦= =

∫ ( )
0

R

rdr

π

∫ 3
max
2 22

0

2 Rv rr dr
R RR

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∫  

4 4
2 2 2max max max

2 2 2 2 2
0

2 2 21 1 1 1 1
2 4 2 4 4

R
v v vr Rr R R
R R R R R

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − = − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

 

max

2
v

=  (5) 

Thus, the mean velocity in the tube is one-half of the maximum velocity. 

Terms describing two important categories of fluid properties: 

• Intensive and extensive properties. Intensive properties are those that retain the same 
value when more mass, with identical properties to the mass already in the system, is 
added to the system; examples of such properties include temperature, density, and any 
property normalized to mass (e.g., energy per unit mass). Correspondingly, extensive 
properties have values that are proportional to the mass in the system (e.g., total energy, 
total weight, or total momentum of the fluid in a system). 

A general approach for analyzing changes of conservative properties in fluid systems: The 
Reynolds Transport Theorem 

The objective of this section is to develop an important, general relationship known as the 
Reynolds Transport Theorem (RTT). The RTT provides a way to analyze/ interpret the changes 
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in conservative parameters (in particular, mass, energy, momentum) in fluid systems. The key 
idea is that, if we define a CV, these parameters change within that CV if and only if fluid that 
contains some of the parameter crosses the CS (by advection), or if the parameter is “injected” or 
“withdrawn” from the CV in some identifiable way that is not associated with advection. 

The RTT is expressed in terms of the vectors and property types defined above. Consider an 
extensive, conservative parameter P that is applicable to a fluid of interest; as noted above, in 
this course, we will consider three items as possibilities for P: mass, energy, and momentum. 
The amount of any of these parameters possessed by the fluid under consideration (which might 
range from a differential to a very large amount) is an extensive parameter, which we will 
designate EP. For example, the total energy of an aliquot of fluid is an extensive parameter that 
we will designate Eenergy (or, for conciseness, Een). The corresponding extensive parameters for 
the total mass and total momentum of the fluid of interest will be designated Emass and Emom, 
respectively. 

Each parameter EP is related to an intensive parameter, iP, defined as the amount of that 
parameter per unit mass of fluid (Emass, or simply m); thus ien

 = Een/ m, and imom
 = Emom/ m. When 

this idea is applied to fluid mass, the intensive parameter ‘imass’ is defined as the mass per unit 
mass, so it is simply an identity (imass

 = 1.0). 

Based on Equation 2, the mass flow rate across any differential unit of surface is 

d m dρ
•

= •V A . Therefore, the product P Pi d m i dρ
•

= •V A  is the rate at which parameter P is 

carried across the differential surface by advection. Above, we defined A  as having a direction 
that is normal to the surface, but we did not specify its direction. By convention, when analyzing 
flow relative to a control volume, the vector A  on any part of the control surface (CS) is defined 
as pointing out of the CV. As a result, if θ = 0, the implication is that the velocity crossing the CS 
is perpendicular to and outward across the boundary of the CV; correspondingly, if θ = 180o, the 
flow is perpendicular to and into the CV. Thus, the product dρ •V A  yields the mass flow rate 
leaving the CV. Correspondingly, Pi v dAρ •  indicates the rate at which parameter P is being 
removed from the CV by advective flow across area dA , with units of amount of mass, energy, 
or momentum per unit time. By integrating this quantity around the whole CS, we obtain the rate 
at which advection is causing the amount of the parameter of interest to decrease inside the CV: 

CS

Rate at which  is leaving
the CV by advection

(amount of  per time)
P

P
i d

P
ρ

⎛ ⎞
⎜ ⎟ = •⎜ ⎟
⎜ ⎟
⎝ ⎠

∫ V A  (6) 

where the symbol 
CS
∫  indicates that we are integrating completely around the control surface. 

Energy and momentum, but not mass, can be added to or lost from the fluid inside the CV by 
means other than advection. For example, energy can be injected into a fluid by pressurizing the 
fluid in a pump, it can be extracted by passing the fluid through a turbine, and it can be added or 
lost by injecting or removing heat, respectively. Similarly, momentum can be injected or 
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extracted by applying various external forces on the fluid (recall that an object gains momentum 
at a rate equal to any external force that is applied). Such processes are most easily quantified in 
terms of the overall rate at which the parameter is injected into or removed from the CV; i.e., in 
terms of extensive parameters. We will write the rate at which P is added by non-advective 

inputs and withdrawals as ,P non advE
•

− , with dimensions of the amount of P per unit time: 

,

Rate at which  appears
in the CV by non-advective

processes (amount of  per time)
P non adv

P
E

P

•

−

⎛ ⎞
⎜ ⎟ =⎜ ⎟
⎜ ⎟
⎝ ⎠

 (7) 

The total amount of P in the CV at any instant can be determined by integrating the amount 
of P per unit volume throughout the entire CV: 

Total amount of  in
the CVat any instant P

P
i d Vρ

⎛ ⎞
=⎜ ⎟

⎝ ⎠ CV
∫  (8) 

where V  is volume. The sense of this integration is that we move all throughout the CV, 
considering differential units of volume, determine the amount of P in each, and then sum up all 
those quantities. The rate of change of the summation in Equation 8 yields the net rate at which P 
is increasing in the CV, i.e.: 

Net rate at which amount
of  in the CV increases 
(amount of  per time)

PP i d V
t

P
ρ

⎛ ⎞
∂⎜ ⎟ =⎜ ⎟ ∂⎜ ⎟

⎝ ⎠
CV
∫  (9) 

Finally, we can combine the terms developed above to find: 

Net rate at which amount
of  in the CV increases
(amount of  per time)

P
P

⎛ ⎞
⎜ ⎟ =⎜ ⎟
⎜ ⎟
⎝ ⎠

 

Rate at which  is leaving Rate at which  enters the CV
the CV by advection  by non-advective processes

(amount of  per time)  (amount of  per time)

P P

P P

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟− +⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

Pi d V
t

ρ∂
∂

,

CV CS

P non advPi d Eρ
•

−= − • +∫ ∫ V A  (10) 
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Equation 10 is the general form of the Reynolds Transport Theorem and can be used to solve 
many important problems in fluid mechanics.1 Although the theorem looks mathematically 
complex, it is relatively easy to understand conceptually (i.e., in terms of the word expressions 
that precede it), and in many cases, simplifying assumptions can be made that allow the equation 
to be fairly easy to use quantitatively as well. For instance, in the commonly encountered 
situation where the system of interest has reached a steady state, the amount of P in the CV 
remains constant over time. As a result, the time derivative on the left-hand side of Equation 10 
becomes zero, and the equation simplifies to: 

RTT for steady-state systems: ,

CS

0 P non advPi d Eρ
•

−= − • +∫ V A  (11) 

If, in addition to having a steady-state system, the property of interest is mass, , 0P non advE
•

− =  and 
iP

 = 1, so the equation becomes even simpler: 

RTT for mass in steady-state systems: 
CS CS

0 d dρ ρ= − • = •∫ ∫V A V A  (12) 

Whenever the RTT is applied to mass in a system with steady flow, it is referred to as the 
continuity equation; this equation is discussed in more detail subsequently. 

Finally, if Equation 12 applies and the fluid is incompressible, ρ is constant for the fluid crossing 
any portion of the CS. In that case, the RTT simplifies to: 

RTT for mass of incompressible  
fluids in steady-state systems: 

CS

0 d= •∫ V A  (13) 

In words, Equation 12 is a formal, mathematical statement of the fact that, in steady-state 
systems, the amount of mass in the CV does not change over time, and that therefore the rate at 
which mass enters the CV must equal the rate at which it leaves. Equation 13 then applies this 
result to systems with fixed fluid densities and indicates that, for such systems, the volumetric 
flow rate into the CV must equal the volumetric flow rate out. 

Additional simplifications can be made if fluid enters or leaves the CV at only a few distinct 
locations. In that case, we can convert the integrals in the above expressions into summations as 
follows: 

                                                 
1 The final term in Equation 10 can be thought of as the total rate at which parameter P is added to the fluid as it 
passes through the CV and can therefore be written as the substantial or material derivative of P, i.e., as DEP/ Dt. 
This derivative is the expression that is used for the non-advective input rate of Pin the RTT as presented in the 
Munson et al. text. 
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RTT for steady-state systems with discrete 
inlets / outlets: 

( ) ,
/

0 P non advP
inlets
outlets

i d Eρ
•

−= − • +∑ V A  (14) 

RTT for mass in steady-state systems with 
discrete inlets / outlets: 

( )
/

0
inlets
outlets

dρ= − •∑ V A  (15) 

RTT for mass of incompressible fluids in 
steady-state systems with discrete 
inlets / outlets: 

( )
/

0
inlets
outlets

d= − •∑ V A  (16) 

If we choose the boundaries of the CV in such a way that they are perpendicular to the CV at 
each inlet and outlet, the equations can be simplified even more, as follows: 

RTT for incompressible fluids in 
steady-state systems with discrete 
inlets / outlets and flow 
perpendicular to CS: 

( ) ( ) ,0 P non advP P
inlets outlets

i VA i VA Eρ ρ
•

−= − +∑ ∑  
(17) 

RTT for mass in steady-state 
systems with discrete inlets / outlets 
and flow perpendicular to CS: 

( ) ( )0
inlets outlets

VA VAρ ρ= −∑ ∑  (18) 

RTT for mass of incompressible 
fluids in steady-state systems with 
discrete inlets / outlets and flow 
perpendicular to CS: 

( ) ( )0
inlets outlets

VA VA= −∑ ∑  (19) 

Note that Equations 15, 16, 18, and 19 are all forms of the continuity equation. 
______________________ 
Example. Water is flowing steadily through a “mushroom cap,” as shown in the following 
diagram. The water enters at a velocity of 3.82 m/s through a center pipe that is 1.0 m in 
diameter, and is then redirected so that it exits at a 45o angle through an annular space between 
two concentric circles with radii of 1.8 and 2.0 m. Find the average velocity of the water at the 
exit point. 
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Solution. We can define a CV that encircles cuts across the cap in such a way that the only flows 
that cross the CS are in the inlet pipe and the annular outlet, as shown below. 

 

To apply the RTT to this CV, we first note that, since the system has steady flow of an 
incompressible fluid, Equation 13 applies. Furthermore, since the CV has only one inlet and one 
outlet, Equation 16 applies as well. Therefore, we can write the RTT for the system as follows: 

( )
/CS

0 cos cosin in in out out out
inlets
outlets

d d V A V Aθ θ= • = − • = − −∑∫ V A V A  

The incoming velocity is given, and the area of the CS that it crosses is 2 / 4pipedπ , or 0.785 m2. 
The velocity vector at this location makes a 180o angle with the normal to the surface, so θin is 
180o, and cos θin is −1.0. 

The exiting velocity is unknown, but we know that the area of the CS that it crosses is the 
annular space between r values of r1

 = 1.8 and r2
 = 2.0 m. Aout is therefore given by ( )2 2

2 1r rπ − , 
which equals 2.39 m2. We also know that, at the outlet, the velocity vector makes a 45o angle 
with the normal to the control surface. Substituting this information into the RTT, we find: 

45o

3.82 m/s

1.0 m

1.8 m

2.0 m
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( )( ) ( )2 o 2 o0 3.82 m/s 0.785 m cos180 2.39 m cos 45outV= − −  

( )( )( ) ( )( )2 23.82 m/s 0.785 m 1 2.39 m 0.707outV= − − −  

( )( )
( )( )

2

2

3.82 m/s 0.785 m
1.78 m/s

2.39 m 0.707outV = =  

______________________ 

Example. A mixture of 10% alcohol and 90% gasoline (gasohol) is being prepared by mixing the 
two individual liquids in the wye pipe shown schematically below. The volumetric flowrate of 
the gasoline, the velocity of the gasohol stream, and the dimensions of the pipe are shown in the 
diagram. The densities of the ethanol, gasoline, and gasohol are 788.6, 680.3, and 691.1 kg/m3, 
respectively. Find the volumetric flowrate and average velocity of the incoming alcohol. 

 

Solution. In this system, the density of the fluid changes as it passes through the CV. At every 
location where the flow enters the CV, it is perpendicular to the CS, so we can apply Equation 18 
to write the RTT as follows: 

( ) ( ) ( ) ( ) ( )1 2 3
0 tot tot tot

inlets outlets
VA VA VA VA VAρ ρ ρ ρ ρ= − = + −∑ ∑  

1 1 2 2 3 3 30 Q Q V Aρ ρ ρ= + −  

200 mm dia 

Qgasoline = 30 L/s 200 mm dia 

100 mm dia Qethanol = ? L/s 

Vgasohol = 30 L/s 

(1) 

(2) 

(3)
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3 3 3 1 1
2

2

V A QQ ρ ρ
ρ

−
=  

( )2 3

3 3 3
3

3

20 mkg m kg m691.1 1.08 680.3 0.030
m s 4 m s m3.4x10kg s788.6

m

π
−

⎛ ⎞0. ⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞−⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠= =  

( )

3 3
2

2 2
2

4.4x10  m / s 0.43 m/s
0.100 m

4

QV
A

π

−

= = =  

Note that the approach for solving this problem utilized the fact that the flow was perpendicular 
to the CS at each entry and exit point, but did not require any assumption about the flow pattern 
between those points. 
______________________ 

The Continuity Equation from the RTT. The forms of the RTT shown in Equations 10 through 
19 are written for a CV of arbitrary shape, and they use a coordinate system that is defined by the 
shape of the CS. As a result, the direction of the area vector changes from one part of the surface 
to another, when viewed from a fixed frame of reference outside the CV. When the RTT is 
applied to mass in steady-state systems, it is instructive to recast the equation in the framework 
of the conventional Cartesian coordinate system. To develop this alternative form of the 
equation, we write the RTT for a CV that consists of a differential-sized box, with sides of length 
dx, dy, and dz. The flow at location (x, y, z) can be moving in any arbitrary direction, and has 
velocity components (magnitudes only) of xv , yv , and zv ; the flow at (x + dx, y + dy, z + dz) has 
corresponding velocity components x xv dv+ , y yv dv+ , and z zv dv+ , as shown in the following 
schematic. 
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Since xv , yv , and zv  are, by definition, the magnitudes of the velocity in the +x, +y, and +z 
directions, they each form an angle of 180o with a line that is normal to and pointing outward 
from the corresponding surface of the CV.2 The velocities x xv dv+ , y yv dv+ , and z zv dv+  are 
also defined to be positive in the +x, +y, and +z directions, but they form an angle of 0o with lines 
pointing directly outward from the CS at the locations where they apply. Thus, applying the RTT 
to mass in this control volume for a system at steady-state (Equation 15), we can write: 

0 dρ= •∫ V A  

( ) ( ) ( ) ( ) ( ) ( )x x yz y y xz z z xyx x dx z z dzy y dy
v v dA v v dA v v dAρ ρ ρ ρ ρ ρ

+ ++
⎡ ⎤⎡ ⎤ ⎡ ⎤= − + + − + + − +⎣ ⎦ ⎣ ⎦⎣ ⎦

 

If we substitute ( ) ( )x
x x

v
v dx

x
ρ

ρ
∂

+
∂

 for ( )x x dx
vρ

+
, the quantity ( ) ( )x xx x dx

v vρ ρ
+

⎡ ⎤− +⎣ ⎦  

simplifies to ( )xv
dx

x
ρ∂
∂

. When analogous substitutions are made for ( )y y dy
vρ

+
 and ( )z z dz

vρ
+

, 

the above equation becomes: 

                                                 
2 Note that this does not mean that the net flow is in the +x, +y, and +z direction, but only that the signs of vx, vy, and 
vz are determined based on those directions being defined as positive. 

x 
y 

z 

vx vx+ dvx 

vy+ dvy 
vz+ dvz 

vz 

vy 

dx 
dy 

dz 
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( ) ( ) ( )0 yx z
yz xz xy

vv v
dx dA dy dA dz dA

x y z
ρρ ρ∂∂ ∂

= + +
∂ ∂ ∂

 (20) 

( )xv
d V

x
ρ∂

=
∂

( )yv
d V

y
ρ∂

+
∂

( )zv
d V

z
ρ∂

+
∂

 (21) 

Dividing through by d V , we obtain: 

( ) ( ) ( )0 yx zvv v
x y z

ρρ ρ∂∂ ∂
= + +

∂ ∂ ∂
 (22) 

Equation 22 is yet another formulation of the continuity equation, and a very commonly 
encountered one. As a reminder, this equation is a mathematical statement of the principle of 
conservation of mass for a system with steady flow. The sense of Equation 22 is that, in a system 
at steady-state, mass that enters the CV by flow in the x direction might leave by flow in the x, y, 
or z direction. Hence a decrease in the mass flowrate in the x direction as the fluid passes through 
the CV (corresponding to ( ) / 0xv xρ∂ ∂ < ) must be compensated by an increase in the mass 
flowrate in at least one of the other directions. Note that ρ and v might vary with location in the 
system (e.g., along the length or cross-section of a pipe), but by the assumption of steady flow, 
they do not change at a given location over time. 

If the fluid under consideration is incompressible, ρ is constant throughout the system, and 
the equation simplifies to: 

0 yx z
vv v

x y z
∂∂ ∂

= + +
∂ ∂ ∂

 (23) 

In the commonly encountered situation in which the flow can be reasonably characterized as 
1-D, the continuity equation for compressible and incompressible fluids is simply: 

( ) 0xv
x

ρ∂
=

∂
 (24) 

0xv
x

∂
=

∂
 (25) 

The result in Equation 25 indicates that the velocity of an incompressible fluid in 1-D, steady 
flow is constant in the direction of flow. In such a system, the fluid velocity might change in the 
direction perpendicular to the flow (e.g., it might vary with location as we move across the cross-
section of a pipe), but it cannot change as we move downstream. Furthermore, because the 
velocity is constant along any line in the downstream direction, the average velocity across any 
cross-section must also be constant between an upstream and a downstream point. 



 12

The RTT Normalized to Fluid Mass or Weight 

Return now to the RTT for steady-state systems for parameters that can have non-advective 
inputs or withdrawals of a parameter of interest (Equation 11): 

,0 P non advPi d Eρ
•

−= − • +∫ V A  (11) 

Each of the two terms on the right-hand side have dimensions corresponding to an amount of P 
per unit time. In a system at steady state, the mass and weight of fluid passing through the CV 
are constant over time. For such systems, it is often useful to rewrite Equation 11 in terms of the 
amount of the parameter of interest per unit mass or weight of fluid passing through the system. 
To do this, we simply divide by the rate at which mass or weight enters or leaves the CV: 

Amount of  added
Amount of  added to fluid per unit timeper unit mass of fluid

Mass of fluid entering or leaving CV per unit time
passing through CV

P
P

⎛ ⎞
⎜ ⎟ =⎜ ⎟
⎜ ⎟
⎝ ⎠

 

Although the above equality is valid as a general statement, it is most useful when applied to 
systems with a single inlet and outlet. In that case, Equation 11 simplifies to a version of 
Equation 17, as follows: 

( ) ( ) ,0 P non advP Pinlet outlet
i VA i VA Eρ ρ

•

−= − +  (26) 

The mass flow rate through the CV is the product ρ V A, which, for a system at steady state, is 
identical at the inlet and the outlet (based on the continuity equation). Dividing through by this 
term yields: 

, ,
, , , ,0 P non adv P non adv

P inlet P outlet P inlet P outlet
E Ei i i i

VA mρ

• •

− −= − + = − +  (27) 

The last term on the right of Equation 27 is the non-advective input of P per unit mass of 
fluid as the fluid passes through the CV. We defined the amount of P per unit mass of fluid as 

the intensive parameter iP. Therefore, ,P non advE
m

•

−  can be written as ,P non advi − , and Equation 27 can 

be written as: 

, , ,0 P inlet P outlet P non advi i i −= − +  

, , ,P outlet P inlet P non advi i i −= +  (28) 

Equation 28 simply states that the amount of P per unit mass of fluid exiting the CV equals the 
amount per unit mass entering plus the amount that is added per unit mass by non-advective 
processes while the fluid is in the CV. If we divide through by g, we obtain the analogous 
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expression with all the terms having units of P per unit weight of fluid; we will designate these 
terms with î : 

, , ,
ˆ ˆ ˆ
P outlet P inlet P non advi i i −= +  (29) 

Summary 

The RTT describes a conservation concept: things can appear in a CV if they are either 
carried in across the boundaries or added by some process that takes place inside the CV; they 
can disappear from the CV if they are either carried out across the boundaries or are removed by 
some process occurring inside the boundaries; and they accumulate inside the CV at a rate that 
equals the difference between the rates at which appear and disappear. In general, the 
accumulation term is quantified via an integration throughout the volume of the CV, whereas the 
transport term is quantified via an integration across the boundaries of the CV. The advective 
term can be written in a concise vector format by defining area to be a vector. 

In steady flow, the accumulation term disappears, greatly simplifying the analysis. Further, if 
transport occurs uniformly over just a few areas (and especially if it is perpendicular to those 
areas), the integration can be converted to a summation, which can be carried out manually. 

The RTT applies for any extensive property (E) of a fluid (which can be expressed as an 
intensive parameter [i] by normalizing to mass). When applied to mass, i becomes unity, and the 
RTT becomes a statement of the conservation of mass. Also, for a fluid with constant density, 

0massE
•

= , so the RTT indicates that advection out minus advection in equals the rate of 
accumulation. Finally, if we restrict our considerations to systems at steady state, no fluid 
accumulates within the CV over time, and the RTT simplifies to a statement that advection in 
equals advection out. 

When applied to mass, the RTT often seems like an overly complex way to express an 
intuitive idea. However, even when we are focusing on mass, the RTT is a useful approach for 
generalizing the principle of conservation of mass to any shape of CV and CS in any complex 
velocity field. In reality, though, the power of the RTT becomes apparent when we consider the 
changes in the amount of energy and momentum that a fluid contains; we consider those 
parameters next. 


