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FLUID FORCES ON CURVED SURFACES; BUOYANCY 

The principles applicable to analysis of pressure-induced forces on planar surfaces are 
directly applicable to curved surfaces. As before, the total force on the surface is 
computed as ∫dF, or ∫p dA, and, in each differential area, the force is perpendicular to the 
surface. The complication is therefore simply geometric, because we need to account for 
the different directions of the dF terms. However, it turns out that this complexity can be 
eliminated, based on the following analysis. (Note: the analysis addresses ways of finding 
the magnitude and direction of the force; finding the location of action is not covered 
here.) 

Consider the forces acting on one side of an infinitely thin, but curved, surface that is 
completely exposed to a fluid at rest. For simplicity, assume that the surface is not curved 
under itself, so that the vertical component of the fluid pressure is downward everywhere 
on one side of the sheet, and upward everywhere on the other side. 

We can analyze the force downward on the upward-facing side of the sheet, based on 
a free-body analysis around a mass of fluid defined by the boundaries shown in the figure 
on the left below. The bottom boundary is the curved surface, the upper boundary is a 
horizontal plane at the water surface, and the side boundaries are vertical planes at the 
edges of the surface. Because this mass of fluid is at rest, the net vertical force on it must 
be zero. Consider a differential area of the curved surface, with length in the curved 
direction of dl and width equal to the full width of the sheet, at a depth h below the water. 
This area can be decomposed into vertical and horizontal components, dAV and dAH, 
respectively, as shown by the triangle below the figure. 

 

Because pressure at a given depth is the same in all directions, and because the 
triangle is of differential size, the pressure exerted on all three faces of the triangle is the 
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same, equal to pair
 + γ h. Therefore, a free-body analysis of the water column above the 

area dA shows that the force downward on dA (and, equivalently, the force upward that 
the area dA exerts on the water) is: 

( )V gas HdF p h dAγ= +  (1) 

Integrating over the whole surface, we find the vertical force downward on the sheet, and 
that the sheet exerts upward on the water, is: 

V gas H HF p dA hdAγ= +∫ ∫  (2) 

gas H above gas H abovep A V p A Wγ= + = +  (3) 

where Wabove is the weight of the water above the surface of the sheet. That is, the total 
downward force on the curved surface equals the sum of (1) the product of the pressure 
of the overlying gas phase and the projected area of the curved surface onto a horizontal 
plane, and (2) the weight of water that would fill the volume directly above the curved 
surface. Note that the analysis is based on the pressure exerted on different points of the 
surface, which in turn depends on γ and h. Thus, the result shown in Equation 3 is valid 
even if some object (e.g., a fish) is in the fluid above the surface of interest. That is, as 
stated, the term Wabove equals the weight of water that would fill the volume directly 
above the curved surface, regardless of whether that volume is actually occupied by water 
or something else. 

A very similar analysis can be carried out to determine the horizontal force on the 
upper curved surface. In this case, the boundaries for the free-body analysis include 
horizontal planes that are tangent to the highest and lowest points of the curved surface, 
vertical planes at the edges defining the width of the surface, a vertical plane an arbitrary 
distance to the right of the surface, and the surface itself. The horizontal force on a 
differential area and on the whole surface are then given by: 

dFH = (pgas + γ h)dAV 

H gas V VF p dA hdAγ= +∫ ∫  (4) 

The integral VhdA∫  is the moment of the area projected onto the vertical plane and is 
therefore the centroid of that area, hc. Integrating the first term in Equation 4 and making 
the above substitution for the second term yields: 

( )H gas c VF p h Aγ= +  (5) 

This result can be stated in words as: the horizontal force on a curved surface is the 
product of the projected area of the surface on a vertical plane with the sum of the 
pressure of the overlying air and the water pressure at the centroid of the projected area. 
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Now consider how the analysis applies to a solid object that is submerged in the fluid. 
We can consider the vertical forces on such an object in two parts: one part accounts for 
all the downward forces on the upper surface of the object, and the other part accounts for 
all the upward forces on its lower surface. Two copies of a schematic of such an object 
are shown below; the differences in shading are explained shortly. 

 

The analysis of the vertical force on this object is virtually identical to that leading to 
Equation 3, but now the pressure-based force upward on the bottom surface is greater 
than the downward pressure-based on the top surface. In the schematic, this difference is 
indicated by the shading, which indicates Wabove: the weight of water above the top 
surface (shown by the shading in the diagram on the left) is less than the corresponding 
weight above the bottom surface (shown by the shading in the diagram on the right). The 
difference between these two forces is the net upward (buoyant) force on the object. The 
effect of the air pressure on the two surfaces cancels out, leaving us with: 

, ,buoyant V bottom V topF F F= −  

gas H above gas H above
bottom top

p A W p A W⎛ ⎞ ⎛ ⎞
= + − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

above above displaced
bottom top volume

W W W= − =  (6) 
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Thus, for an object that is completely submerged in a single fluid, the buoyant force 
equals the weight of the fluid displaced by the object’s volume. This is the proof of 
Archimedes’ first law. 

The net horizontal force on such an object would be zero, since its projected areas to 
the left and right would be the same. However, there would be a net horizontal force on 
the object if it had different fluids on its two sides (e.g., if it were a plug, so that it had 
water on one side and air on the other). 

If an object is only partially submerged in a liquid (i.e., if it sticks out of the liquid at 
any location), the analysis follows the same outline. Since the system is at rest, the 
downward force of the object (typically, its weight plus the pressure-based forces on its 
upper surfaces) must be balanced by the upward force on it (any support structure plus 
the pressure-based force on its lower surfaces). As above, we can compute the buoyant 
force on the object as the difference between the upward, pressure-based force on its 
lower surface and the downward, pressure-based force on its upper surface. These forces 
can be computed by applying Equation 3 to the lower and upper surfaces, but we must 
take care to include in Wabove only the projection of those parts of the surface that are 
actually in contact with the liquid. 

---------------------------------------- 
Example. In the system shown schematically below, the solid cone fits into the 1.5-ft 
diameter opening in the bottom of the tank to prevent water from draining from the tank. 
The volumes of the cylindrical portion of the cone above the opening (B), the conical 
section below the opening (C) and the remaining, semi-annular portion of the cone (A) 
are shown in the figure. What is the minimum weight of the cone that will prevent it from 
lifting away from the opening? 

 

Solution. Section A of the cone is completely submerged in the water (i.e., it has water 
both above and below it), so the buoyant force on that section equals the weight of water 
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that it displaces, i.e., ,buoyant A AF V γ= . Section B, on the other hand, is a cylinder with 
water above it and air below it. The air pressure on the bottom and the projected area of 
this section are identical to the air pressure on the top and the top projected area, 
respectively, so the two forces on section B associated with air pressure cancel one 
another. However, the section also experiences a force downward from the water pressure 
on its upper surface, equal to ,B top Bh Areaγ . The distance hB,top is given as 2 ft, and, by 
geometry, the diameter of the B cylinder is 1.5 ft. We can therefore calculate the force on 
section B. Section C is not in the water and therefore experiences no buoyant or pressure-
based force from the water; its only effect is to contribute to the weight of the cone, 
which is what we will solve for. We can therefore carry out a force analysis on the whole 
cone. Defining up as the direction of positive force, we have: 

0tot A B coneF F F W= = − −  

( ),A B top B coneV h Area Wγ= − −  

( ) [ ]21.5362.4 2 lb 73.6 lb
2 4coneW

π
π

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= − =

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 

The cone must weigh at least 73.6 lb to keep the water from leaking out. 
---------------------------------------- 

Example. Calculate the force P necessary to lift the 4-ft diameter, 400 lb container off the 
bottom in the scenario shown in the schematic. Draw a free body diagram of the 
container to assist in the solution. 
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Solution. The water exerts a compressive force on the container, but no vertical force, so 
it has no effect on the force required to lift the container. Also, the atmospheric pressure 
exerts a force downward on the top surface of the container that is exactly equaled by the 
upward force it exerts on the bottom, so it also has no effect on the required force P. The 
pressure at a depth of 10 ft of oil is γoilh, and this pressure is exerted on the upper surface 
of the container. The total downward force is therefore given by: 

down oilF W hAγ= +  

( ) [ ]2

3

4 ftlb400 lb 0.8 62.4 10 ft 6673 lb
ft 4

π
⎛ ⎞⎛ ⎞ ⎜ ⎟= + =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 

The force P must exceed 6673 lbs to lift the container. 
---------------------------------------- 

If an object is floating in a fluid, the analysis hardly changes: the buoyant force on the 
object must still balance the downward force of the object’s weight and any other 
downward force on the object. The only difference is that, in this case, the volume of 
displaced fluid is less than the full volume of the object. The upward force on the bottom 
of such an object equals the weight of water that would be contained above the bottom 
surface, plus the force associated with any pressure of the overlying gas. A similar 
statement applies to any upper surface that is submerged. The effects of the gas pressure 
cancel out, and the net result is that the buoyant force on the object equals the weight of 
liquid that it displaces. Thus, a floating object displaces a volume of water with weight 
equal to the weight of the object. This result is known as Archimedes’ second law. 

 

Weight of liquid in the volumes outlined in bold equals the 
upward force (on left) and downward force (on right) on the 
semi-submerged object. The difference between these two volumes 
equals the submerged volume of the object. Correspondingly, the 
net upward force equals the weight of a volume of water equal to 
the submerged volume of the object. Conclusion: a floating object 
displaces a volume of liquid that has the same weight as the 
object does. 
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The center of buoyancy of an object, i.e., the location of the resultant buoyant force, 
can be defined analogously to a center of gravity or of pressure. The center of buoyancy 
is always at the center of gravity of the liquid that has been displaced. Thus, the net 
vertical force on a partially or fully submerged object is the vector sum of the 
(downward) gravitational force acting at the center of gravity and the (upward) buoyant 
force acting at the center of buoyancy. 

 


