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PRESSURE FORCES ON PLANAR SURFACES 

Objective: In this section, we determine the force that fluids at rest exert on flat (planar) 
surfaces and, correspondingly, the force that those surfaces must exert on the fluids to 
keep them static. Applications include enclosed and open vessels for containing water, 
such as fish tanks, standpipes, large water tanks, dams, etc. 

Key concept: Force balance: an object at rest experiences no net force. The forces that 
act on any mass of fluid in a static system always include a gravitational force, which acts 
on the whole mass of fluid, and a pressure force, which acts on the boundaries of the 
fluid. Normally, when we think of the weight of an object, we consider the object in its 
entirety (i.e., as a single item). In a more formal, mathematical sense, though, we could 
compute the gravitational force on the object by dividing its volume into differential 
elements, dV. The gravitational force on each such element would be dF = γ dV, and the 
total (resultant) gravitational force would be the integral of these terms, ∫γ dV. In addition 
to the magnitude of the resultant force, we often wish to know the location at which that 
force acts, which we refer to as the centroid of mass or the center of gravity. 

Pressure also acts over a distributed range, but it acts over an area, not a volume. 
Correspondingly, the product of the local pressure and differential area on which it acts 
yields the force (and its direction) at that locality, i.e., dF = p dA. To determine the total 
pressure-induced force on an object, we can move around the whole surface of interest, 
determining the pressure and the direction in which it is exerted on each differential area, 
i.e., the pressure-induced force is ∫p dA. This calculation is different from that for gravity 
both because of the volume vs. area consideration, and because the pressure at different 
locations might act in different directions, whereas gravity always acts downward. As 
with gravitational forces, it is often convenient to compute the net pressure-induced force 
on the whole object and express those as a single, resultant force. Again, this resultant is 
slightly more complicated than for gravity, because in addition to its magnitude and 
location, we need to determine its direction. In essence, this portion of the course 
provides a few tools for determining the magnitude and direction of this resultant. 
Although at times the calculations can get a bit complex (just because of geometry, not 
conceptual complexity), it is important to keep in mind that we are always simply trying 
to carry out the integration of pressure over area (i.e., ∫p dA) described above. 

Overall Approach 

Carrying out the integration of ∫p dA by characterizing the surface as a large number 
of δA-sized segments and adding up all the p δA will always yield a correct result for F, 
but it is a tedious, brute force approach – similar to integrating a function by graphing the 
function and counting the squares underneath the curve. In fact, it is even more 
complicated than that, because each dF has a direction that we need to keep track of, as 
well as a magnitude. 

If the surface is curved, we might have no alternative but to carry out such an 
integration. However, if the surface is planar, and especially if it is planar and has a 
common shape (rectangular, triangular, etc.), the integration can often be carried out 
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more easily using other techniques. These techniques work well for planar surfaces, 
because the forces on all parts of such surfaces are in the same direction (perpendicular to 
the surface), and the ratio between a coordinate along the surface and the increase in 
pressure is linear. 

Before we analyze the system of interest, it is useful to review the idea of a center of 
gravity and, in general, the centroid of any distribution. The x value of the center of 
gravity represents the point where the moment of weight in the +x direction (integral of 
weight * x-distance from the reference point) exactly equals the moment of weight in the 
−x direction, so there is no tendency for the object to “tilt” in either the +x or −x direction 
at that point; the same is true for the y and z directions. More formally, we can say that at 
the centroid of mass, the moment of weight relative to any reference point equals the 
moment computed using the total weight and the location of the center of gravity, i.e.: 

; ;tot cg tot cg tot cgm x xdm m y ydm m z zdm≡ ≡ ≡∫ ∫ ∫  (1) 

; ;cg cg cg
tot tot tot

xdm ydm zdm
x y z

m m m
= = =∫ ∫ ∫   (2) 

In general, then, as shown by Equation (2), the centroid of mass along a given axis equals 
the moment of mass along that axis divided by the total mass. By analogy, the centroid of 
area equals the moment of area along an axis divided by the total area: 

c
tot

l dA
l

A
= ∫  (3) 

where lc is the location of the centroid of area along an axis l. 

Now, consider a flat surface in a fluid, making an angle θ with the horizontal plane. 
Although the actual surface of interest might be at any depth in the fluid, we can 
(conceptually) extrapolate the plane in which the surface lies all the way to the top of the 
fluid, and define a coordinate l that originates at that surface and is directed downward 
along the surface of the submerged object. The object of interest therefore spans a length 
L between coordinates ltop and lbot. At each value of l between ltop and lbot, the object has a 
width w, which might vary from one value of l to the next. Define dA as the differential 
area corresponding to a differential distance dl along the flat plate and the width of the 
plate, w, at that value of l. 

The force on the surface has aspects that might be of interest: magnitude, direction, 
and location of action. Since the surface is flat, the direction of the force is identical 
everywhere (perpendicular to the surface), so the unknowns are the magnitude and 
location of action. In the following analyses, three approaches are presented for 
calculating these unknowns. 
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The Magnitude of the Pressure-Based Force on the Surface 

The Integration Approach 

The total pressure-based force on the surface of interest can be written as follows: 

( )sin sinpF p dA h dA l dA l dAγ γ θ θ γ= = = =∫ ∫ ∫ ∫  (4a) 

sin l dAγ θ= ∫  (4b) 

where the integration is carried out over all differential areas on the surface of the object 
of interest. The expressions in Equation (4a) apply even if the surface is in contact with 
multiple fluids with different γ values, and Equation (4b) applies in the common situation 
where all the fluid in contact with the surface has the same γ. Based on these results, one 
surefire approach for calculating Fp is to insert an expression for dA into Equation (4a) or 
(4b) and carry out the integration, either analytically (if possible) or numerically. 

The Formula Approach 

The integral l dA∫  in Equation (4) is the moment of the area along the l axis. 
According to Equation (3), this integral can be written as Atotlc. Making that substitution, 
we obtain: 

sinp c tot c totF l A h Aγ θ γ= =  (5) 

θ 

dA1 
h1 l 

Plane through surface of 
interest, extended to the top 
of the fluid 

dF1 = γ h1 dA1 

ltop 

lbot 
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Equation (5) indicates that Fp can be computed from knowledge of the specific gravity of 
the fluid, the total surface area of the object of interest, and either the depth of the 
centroid of the area (hc) or the value of l at the centroid (lc) and θ. Using this formulation 
to compute Fp is convenient, because lc is tabulated for many common geometric shapes 
(see, for example, Munson Fig. 2.18, p.61). Therefore, if the surface of interest has one of 
those shapes, we can determine Fp using the tabulated information without carrying out 
the integration that is required if we use a form of Equation (4). (Even if the centroid is 
not tabulated for the shape of interest, we could use Equation (3) to compute the location 
of the centroid and then use Equation (4) to compute the force on the plate. That, 
however, would require integration of Equation (3) and would be equivalent to using the 
integration method.) Note that Equation (5) applies only to an area that is in contact with 
a constant γ. If a surface is in contact with multiple fluids, a separate value of Fp must be 
computed for each section of the surface; the overall force can then be computed as the 
sum of the forces on the various sections. 

The “Pressure Prism” Approach 

Yet another, equivalent way to analyze Fp is to imagine a prism with dimensions 
equal to the length and width of the surface of interest and, in the third coordinate 
direction (perpendicular to the plate), the pressure. The “volume” of that prism then 
corresponds to the integral ∫p dA, i.e., it equals Fp. If the “pressure prism” has a shape 
whose volume is easy to calculate, Fp can be computed using simple principles of 
geometry. In such a case, the pressure prism approach is even easier to use than the 
formula approach. In theory, the pressure prism approach could be used for many 
geometries of the flat plate. However, as a practical matter, it is useful only for plates that 
have a constant width, W, because only in that case does the prism have a shape 
(triangular or rectangular) whose volume is easily computed. Like the formula approach, 
the pressure prism approach can be used only for parts of the surface exposed to a single 
fluid (i.e., single γ). If a surface is in contact with multiple fluids, the force must be 
computed separately for each area in contact with a given fluid. 

The Center of Pressure 

The preceding analysis yields a value for the total (resultant) force on a flat plate of 
arbitrary shape. We also know that the direction of that force is perpendicular to the plate. 
However, we do not yet know the location of the resultant. This location is known as the 
center (centroid) of pressure, although center (centroid) of force might be a better name. 
The idea is that the total force on a plate is simply the sum of the forces on the various 
parts of that plate. In the analysis of that force, the location of a particular force is 
irrelevant; a force near the top of the plate “counts” as much as one near the bottom, and 
both such forces must be resisted to hold the plate in place. On the other hand, the 
location of the resultant force reflects a balancing of the moments of force, i.e., it is at the 
centroid of force. This centroid is at a location nearer to the larger forces and farther from 
the smaller ones. 
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Like the total force, the location of the centroid of force can be computed using the 
integration method, the formula method, or the pressure prism method. These approaches 
are described next. 

The Integration Approach for Computing the Center of Pressure 

The location of the center of pressure (or center of force) can be computed following 
exactly the same approach as shown above for identifying the centroid of area (Equation 
(3)); the only difference is that in this case we take the first moment of force rather than 
the first moment of area, i.e.: 

bot

top

l

p
l

ctr of pressure p
p

l dF

l l
F

≡ =
∫

 (6) 

Equation (6) is universally applicable for finding the center of pressure. However, just 
like the center of area, if the surface of interest is flat surface and has a common 
geometric shape, the formula approach or the pressure prism approach might be easier. 

The “Formula” Approach for Computing the Center of Pressure 

For a surface in contact with a single fluid, we can differentiate Equation (4b) to obtain: 

pdF =  ( )sind l dAγ θ =∫  sinl dAγ θ . Also, by Equation (5), sinp c totF l Aγ θ= . 

Substituting these expressions into Equation (6), we obtain: 

p
p

p

l dF
l

F

γ

= =∫
2 sinl θ

bot

top

l

l

dA

γ

∫
sinc totl A θ

2
o

1 1bot

top

l

c tot c totl

l dA I
l A l A

= =∫  (7) 

where Io is the moment of inertia of the surface about an axis where the plane of the plate 
intersects the top of the fluid (l = 0). If we wish to express lp with respect to the centroid 
of the object rather than the top of the fluid, we can use the parallel axis theorem, which 
tells us that: 

2
o tot c cI A l I= +  (8) 

Combining Equations (7) and (8), we obtain: 

( )21 c
p tot c c c

c tot c tot

Il A l I l
l A l A

= + = +  (9) 

Like Equation (5), the convenient feature of Equation (9) is that Ic values for many 
commonly shaped objects are tabulated. Therefore, for such objects, we can evaluate Fp 
from Equation (5) and lp from Equation (9), knowing only the geometry of the system 
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and the specific weight of the fluid. Equation (9) indicates that lp is always lower (for our 
coordinate system, larger l) than lc, which is consistent with what we would expect 
intuitively. 

The “Pressure Prism” Approach for Computing the Center of Pressure 

As noted above, for any submerged surface, a pressure prism can be drawn whose 
volume represents the total force on the surface. If the surface has a constant width, then 
the shape of the prism is simple, making this approach a convenient one for analyzing Fp. 
Correspondingly, since the pressure prism shows the distribution of forces in a pseudo-
3-D manner, the centroid of the volume of the prism indicates the location of action of 
the force. Since the centroid of the volume of rectangular and triangular prisms is easily 
identified, this approach is easy to use for identifying lp whenever it can be used for 
identifying Fp. 

Example 

In the following section, the three approaches presented above are all used to solve the 
same example problem. 

Problem Statement. Calculate the minimum force FG necessary to prevent the 12-ft x 

12-ft gate shown in the following schematic from opening. The gate weighs 500 lb, and 
the tank contains water under air at a pressure of 10 psi. Draw a free body diagram of the 
gate. 

 

The pressure force acts perpendicular to the gate and tends to push it open. The forces 
holding the gate closed include its weight, the force exerted by the hinge, and the force 
Fgate applied at point R, while the force tending to open the gate is due to the pressure on 
its underside. At equilibrium, the sum of the forces perpendicular to the gate and the 
moment around the hinge must both be zero. 

45o 

Hinge

Water 

Air; 
pair

 = 10 psi 

Fgate 

12 ft
l 

h 

R 
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The Integration Approach. We first solve the problem by computing the force of the 
fluid on the plate via formal integration of p dA. The force of water on the plate is 
perpendicular to the gate, directed upward and to the left at a 45o angle. We can define 
the l axis to run along the plate from the hinge to point R, so that l has possible values 
from 0 to 12 ft. The width of the gate is also 12 ft. Consider a differentially thin strip of 
the gate, with length dl and width equal to the full width of the plate (12 ft). The force of 
the water on such a strip is: 

( )12 ftdF p dA p dl= =  (Ex1) 

The pressure at the top of the water is 10 psi, so the pressure at any value of l equals that 
pressure plus the pressure contributed by the water depth: 

( )
2

o
2

in10 psi 144 1440 psf sin 45
ft

p h lγ γ
⎛ ⎞

= + = +⎜ ⎟
⎝ ⎠

 (Ex2) 

where h is the vertical distance from the top of the water to l. Substituting from Equation 
Ex2 into Equation Ex1, we obtain: 

( )( )o1440 psf sin 45 12 ftdF l dlγ= +  (Ex3) 

Inserting γ = 62.4 lb/ft3 and sin 45o = 0.707: 

2

lb lb17,280 529.5
ft ft

dF l dl⎛ ⎞= +⎜ ⎟
⎝ ⎠

 (Ex4) 

Integrating, we find the total force exerted by the water on the gate to be: 

L

2
0

lb lb17,280 529.5
ft ft

F l dl⎛ ⎞= +⎜ ⎟
⎝ ⎠∫   

12 ft
2

2
0 ft

lb 1 lb17,280 529.5
ft 2 ft

l l⎡ ⎤⎛ ⎞= +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
  

245,482 lb=  (Ex5) 

To find the location where the pressure acts, we use Equation (6): 

0

L

p

p
p

l dF
l

F
=

∫
 (Ex6) 
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We can evaluate the integral on the right side of this equation by substituting for dF from 
Equation Ex4: 

( ) ( )2

0 0 0

17280 529.5 17280 529.5
L L L

pldF l l dl l l dl= + = +∫ ∫ ∫  

( ) ( )
12 ft2 3

0

17280 529.5
2 3
l l⎡ ⎤

= +⎢ ⎥
⎣ ⎦

 

2 2 3 212 0 12 017280 529.5 1.244 6 3.05 5 1.549 6
2 3

e e e− −
= + = + =  

Inserting that result and the value of Ftot (from Equation Ex5) into Equation Ex6: 

0 1.549 6 6.31 ft
2.45 5

L

p
tot

ldF
el

F e
= = =

∫
 (Ex7) 

A free-body diagram showing the forces on the gate is provided below. The force 
required to keep the gate closed can be determined by setting the moment around the 
hinge to zero. This calculation, considering the resultant pressure force, the weight of the 
gate (500 lb), and the force exerted at the bottom of the gate, is as follows: 

( )( ) ( )( ) ( )( )o0 500 lb 6 ft x sin 45 12 ft 245482 lb 6.31 ftgateF= − − +  

128906 lbgateF =  

 

The “Formula” Approach. In the formula approach, we use Equation (5) to compute the 
force on the gate exerted by the water, Fwater. To use that equation, we need to determine 

6.31 ft

500 lb 

245482 lb 

Fgate 
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the water depth at the centroid of the area. The gate is rectangular, so its centroid of area 
is in the middle of the rectangle. Thus, lc

 = 0.5 (12 ft), or 6 ft. The depth at this value of l 
is represented as hc and equals lc

 sin 45o. Therefore: 

water cF h Aγ=  

( )( )( )3 o62.4 lb/ft 6 ft ( sin 45 ) 12 ft x 12 ft 38122 lb= =  

This force acts at the centroid of pressure, which is related to the centroid of area by the 
parallel axis theorem (Equation (8)): 

2
o tot c cI A l I= +  

To use the above equation, we need to evaluate Ic, which is given for a rectangle as 
bh3/12, where b and h are the base and height of the rectangle. Plugging values into this 
equation, we find: 

( )( )
( )( )

33 12 ft 12 ft /12/12 6.0 ft 8.0 ft
6 ft 12 ft x 12 ft

c
p c c

c c

I bhl l l
l A l A

= + = + = + =  

We now know both the magnitude and location of the resultant force attributable to the 
water. We need to add to this the resultant force from the overlying air, Fair. In the current 
scenario, this force is the product of the gas pressure and the area of the plate: 

( )( )21440 lb/ft 12 ft x 12 ft 207360 lbair air totF p A= = =  

Because this pressure acts uniformly on all parts of the plate, the resultant is in the center 
of the plate, at l = 6 ft. 

The two force vectors, Fwater and Fair, can now be added. 

Resultant: ( )1 2 207360 38122 lb 245482 lbtotF F F= + = + =  

( )( ) ( )( )1 1 2 2

1 2

207360 lb 6 ft 38122 lb 8 ft
6.31 ft

207360 lb 38122 lbp
F l F ll

F F
++

= = =
+ +

 

These values are the same as we obtained using the integration method, as they must be. 
The free body diagram is, of course, also the same, leading to the same result for the 
required magnitude of force Fgate; the diagram and subsequent calculations are not 
repeated here. 

The “Pressure Prism” Approach. In the pressure prism approach, the contributions of 
the overlying air and the water to the pressure on the gate are represented by separate 
prisms. Each prism has two dimensions that correspond to the dimensions of the flat plate 
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(12 ft x 12 ft). The third dimension is shown as an arrow whose length is proportional the 
pressure at that location, as shown below. 

 

The “volume” of each prism represents the force of the corresponding fluid on the 
gate, and the location at which that component of the force acts is the center of volume of 
the prism. For the system of interest, the magnitudes of the forces are: 

( )( )( )12 ft 12 ft 1440 psf 207,360 lbair airF LWp= = =  

( )o1 1Area of triangle *thickness of prism sin 45
2 2waterF Lp W L L Wγ⎛ ⎞= = =⎜ ⎟

⎝ ⎠
 

( ) ( )( ) ( )3 o1 12 ft 12 ft 62.4 lb/ft sin 45 12 ft
2

⎡ ⎤= ⎣ ⎦  

38,122 lb=  

The resultant force associated with the water acts at a value of l corresponding to the 
center of area of the triangle. The center of area of a triangular is at one-third of the 
distance up from its base. In the system of interest, l is measured down from the apex 
(where l = 0), so the center of area is two-thirds of the way down from that point, i.e., it is 
at l = (2/3)L. Note that, although this point is lc for the geometric shape, it corresponds to 
lp for the force represented by the pressure prism. 

The air pressure acts uniformly on the whole gate, so the location of action of the 
resultant from that force is in the center of the gate, at l =(1/2)L. Thus: 

lp,water = 2/3*12 ft = 8 ft lp,air = 1/2*12 ft = 6 ft 

L = 12 ft 

W = 12 ft 

p = (l γ  sin 45o) lb/ft2 

W = 12 ft 

L = 12 ft 

p = 10 psi = 
 1440 lb/ft2 

l 

Pressure prism for the force 
of the air on the plate 

Pressure prism for the force 
of the water on the plate 
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Resultant: ( )1 2 207360 38122 lb 245482 lbtotF F F= + = + =  

( ) ( )
( )

207360 lb*6 ft 38122 lb*8 ft
6.31 ft

207360 38122 lbpl
+

= =
+

 

Thus, once again, we obtain the same result as when we used the other analysis methods. 


