
 1

PRESSURE VARIATION IN FLUIDS AT REST; PIEZOMETERS 

Direction of the pressure-induced forces in a fluid at rest 

Because fluids deform continuously when exposed to any shear stress at all, the only 
force that can be applied to a surface in a fluid at rest must be normal to that surface. 
Thus, as a (real or imaginary) surface is moved in any direction in a fluid, the force on it 
shifts to always remain perpendicular to every part of the surface. 

Variation of pressure with direction at a point in a fluid at rest 

Consider a force balance on an arbitrary, but differential volume of a fluid at rest. To 
keep the analysis mathematically simple, we choose the shape to be a wedge with one 
vertical and two horizontal sides, although in principle any shape would be acceptable. A 
diagram defining key terms and parameters for such a wedge is shown below. 

 

A balance on the forces in the x direction yields: 

( )1 3 sinxF p dydz p ds dy θ= −∑  

where p1 and p3 are treated as constant along the surface on which they act because the 
dimensions of the wedge are differential. In the preceding equation, the sin θ is included 
to account for the fact that the force is directed into the ds x dy surface, but only a portion 
of that force is in the x direction. By geometry, however, we see that ds sin θ is dy, so we 
can write: 

10 p dydz= 3p dzdy−  

1 3p p=  

A similar balance on the forces in the z direction must take into account the weight of the 
wedge of fluid, in addition to the pressure-induced forces, yielding: 

dy 

dx 

dz 
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dF3 = p3 ds dy 

dF2 = p2 dx dy 

dF1 = p1
 dz dy 
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( )2 3 coszF p dxdy gdV p ds dyρ θ= − −∑  

20 p dxdy=
1
2

g dxdyρ− 3dz p dxdy⎛ ⎞ −⎜ ⎟
⎝ ⎠

 

2 3
1
2

p p gdzρ− =  

If dz shrinks to zero, so that wedge becomes a point, p2
 = p3. Thus, at a point, p1

 = p2
 = p3, 

i.e., pressure is identical in all directions. This derivation is for a fluid at rest, but a 
similar result is obtained in an ideal flowing fluid (i.e., a fluid with zero viscosity, known 
as an inviscid fluid). 

Variations of pressure with location in a fluid at rest 

Consider a small box (δx x δy x δz) of fluid at rest, with pressure p in the middle. As in the 
preceding analysis, because the fluid is static, the sum of forces in each direction is zero. 
Since p is the pressure in the middle of the box, the pressure on each face equals p plus or 
minus the product of the gradient in pressure plus the distance from the center to that 
face. Thus, for example, in the x direction: 

( ) ( )0
2 2x

p x p xF p y z p y z
x x
δ δδ δ δ δ∂ ∂⎛ ⎞ ⎛ ⎞= = − − +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∑  

0
2

p xp y z
x
δ δ δ∂⎛ ⎞= −⎜ ⎟∂⎝ ⎠ 2

p xp y z
x
δ δ δ∂⎛ ⎞− +⎜ ⎟∂⎝ ⎠

 

0 2
2

p x p x
x x
δ δ∂ ∂⎛ ⎞= − = −⎜ ⎟∂ ∂⎝ ⎠

 

0p
x
∂

=
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An essentially identical derivation for ∑Fy indicates that 0p
y
∂

=
∂

. On the other hand, for 

the vertical forces: 

0
2 2z

p z p zF p x y p x y x y z
z z
δ δδ δ δ δ γδ δ δ∂ ∂⎛ ⎞ ⎛ ⎞= = − − + −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∑  
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= −
∂
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∂
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To sum up: 

0p p
x y
∂ ∂

= =
∂ ∂

 pressure in a fluid at rest does not vary in a horizontal 

plane 

p g
z

γ ρ∂
= − = −

∂
 pressure in a fluid at rest increases in direct proportion 

to depth and the specific weight (or, equivalently, the 
density) of the fluid 

Since we now see that p depends on location only in the z direction, we can convert the 
partial differential into an ordinary differential, yielding: 

dp dzγ= −∫ ∫  

Integration of this equation between any two elevations for a fluid of constant density 
yields: ∆p = −γ∆z = −ρg∆z. The minus signs in these equations reflect the fact that 
pressure increases with depth but, by convention, z increases in the upward direction. It is 
common to eliminate the minus signs by defining h as the depth (increasing downward) 
from the top of the fluid, in which case we can write ∆p = γh = ρgh, where ∆p is 
understood to be the pressure increase from the top of the fluid. If the top of the fluid is at 
atmospheric pressure, then its gage pressure is zero, so we can equate γh with the gage 
pressure at depth h. 

These results justify expressing pressure differences in terms of heights (heads) of fluid, 
if the identity (specifically, the density) of the fluid is specified. That is, one can state that 
the pressure at a point is “5 m of water” or “6 inches of Hg,” meaning that the pressure is 
the same as would be found at that depth of the specified fluid. The following are all 
(approximately) equivalent ways of reporting normal atmospheric pressure: 1 atm ≈ 10 m 
of H2O ≈ 34 ft of H2O ≈ 100 kPa ≈ 14.7 psi ≈ 2117 psf. 

A corollary of the relationship derived above is that, for any arbitrary points 1 and 2 in a 
static fluid of uniform specific weight (i.e., density): 

( )2 1 1 2z z p pγ − = −  

2 2 1 1z p z pγ γ+ = +  

Thus, the sum z pγ +  is identical everywhere in a static fluid of uniform density. 
Note that this statement applies even if we have to take a circuitous route to get from 
point 1 to point 2. Note also that these equalities explain why we can treat the pressure as 
being uniform in a gas phase of “human dimensions”: γgas is so small that γ(z2

 − z1) is 
negligible for most ∆z of interest. However, if we are interested in very large ∆z, then we 
do have to take that term into account. 
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We can use the above relationship to determine ∆p between any two points in a uniform, 
continuous fluid at rest. If we reach an interface, where one fluid terminates and a 
different fluid with a different density begins, the relationship applies to each fluid 
individually. 

 

(Note: Difference in γgasoline and γw is greatly exaggerated in above schematic.) 

When this relationship is combined with the fact that the pressure must be the same on 
both fluids right at the interface (because the pressure is identical in all directions at a 
single point), we can determine ∆p between two points connected by a sequence of 
different fluids. That is, as we move from one fluid to the next, the relationship between z 
and p changes (because γ changes), but we can nevertheless apply the principle to each 
layer individually and then sum the ∆p’s to determine the overall ∆p. This idea is central 
to the design of at least one set of tools to measure pressure differences, as is shown next. 

Piezometers 

Piezometers are instruments in which the difference in pressure between two locations is 
measured based on the difference in elevation of a fluid that is exposed to those two 
pressures. The elevation difference is directly proportional to ∆p, as we have seen. If the 
difference in pressures is large, it is convenient to use a dense liquid as the gage fluid, so 
that the elevation of that fluid is not too large. Also, we might want to take precautions to 
prevent the gage fluid from entering the reservoirs having the two pressures of interest, 
even if the pressure difference became rather small. These considerations lead to the 
design of a typical U-tube manometer. 

A classic example of use of a piezometer to measure pressure is the mercury barometer. 
In this instrument, a tube is filled with mercury (Hg), which is a very dense liquid 
(s.g. = 13.56). This tube is then inverted into a pool of mercury. The gravitational force 
pulls the liquid column down, generating a gas space above it. However, the only 
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material available to fill this space is Hg gas. Hg(l) has a very low vapor pressure at 
normal temperatures (1.7x10−4 kPa, 2.5x10−5 psi), so the pressure at the top of the liquid 
column is essentially zero. Because the column is at rest, the net force on any portion of it 
is zero. If we carry out a force analysis on a differential element of the liquid at the 
bottom of the column, at the same elevation as the top of the pool of Hg, we find that the 
force down on that element is γHgh (where h is the height of the column above the pool), 
and the force up is the atmospheric pressure. Therefore, since we know γHg and h, we can 
determine patm. 

 

Manometers can also be used to determine the pressure in a closed container, the 
pressure difference between two containers, or the pressure difference between two 
locations in a pipe, as follows: 

Gas space containing Hg(g) at the (extremely low) 
vapor pressure of Hg(l) at the given temperature 

Hg(l) 
h 1 ,HgvaporF p= HghAγ+  

F1 patm 

F2

F2 = patm A 

F1 = F2 

patm = γHg h 
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( ), 2 2 1 10 at point 3A gagep h hγ γ= + −  
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1 1 2 2 3 3B Ap p h h hγ γ γ= + − −  

1 1 2 2 3 3B Ap p h h hγ γ γ− = − −  
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1 1B Ap p h γ= − 2 2 1h hγ− + ( ) ( )2 1 2 1 2Ah p hγ γ γ+ = + −  

(Note that the ∆p’s between points (1) and (2), between points (2) and (3), and between 
points (4) and (5) are zero, so they need not be considered in the analysis.) 

( )2 1 2B Ap p h γ γ− = −  


