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OPEN CHANNEL FLOW 

Open channel flow is characterized by a surface in contact with a gas phase, allowing the 
fluid to take on shapes and undergo behavior that is impossible in a pipe or other filled conduit. 
Examples include not only “channels” as the word is usually used, but also flow across flat 
surfaces such as parking lots or streets, open ocean flow, flow exiting dams, etc. Like pipe flow, 
open channel flow can be laminar or turbulent, and steady or unsteady; it can also be uniform 
(constant depth along the channel) or non-uniform. 

In one-dimensional open channel flow, the distance axis is conventionally labeled x, and the 
depth y. The Reynolds number is often defined as Re /hr V ρ µ= , where rh is the hydraulic 
radius. With this definition, flow is typically laminar if Re < 500 and turbulent if Re > 12,500; the 
wide gap reflects both a more gradual transition in open channels than in pipes, and also 
variations among channels in terms of geometry. Flow in river-sized systems is typically 
turbulent, and that in thin-layer flow along the ground is often laminar. 

A key feature of open channel flow is the presence of waves on the liquid surface. The 
velocity of such waves is of particular interest. To understand the features that control the 
velocity of waves, imagine a single wave that is moving right-to-left across the surface of a water 
body at a velocity c, as shown in the figure on the left below. Note that the wave is just the 
disturbance of the water surface shape; the water underneath the wave is essentially stationary, 
other than the nearly circular rotation that water near the surface undergoes as the wave passes. 

 

Now imagine that the water to the left (with depth y) is caused to move with velocity c to the 
right. This causes the wave to become stationary relative to an observer who is outside the 
system and is not moving. (Note that this same scenario could be established by having the 
observer move with velocity c to the left, without movement of the underlying water.) As the 
water goes under the wave, it slows down in accord with the continuity equation, as follows. 
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Defining the +x direction as movement to the right, the water loses x-directed momentum as 
is passes through a CV defined as the space between points 1 and 2 on the x axis, the depth of the 
water column, and a width b. Therefore, a force must be applied in the −x direction. The only 
forces on the water are the pressure forces, so the momentum equation applied to the CV yields: 

F m V
•

= ∆  

( )1 1 2 2 2 1p A p A m V V
•

− = −  (2) 

( ) [ ] [ ]( ) ( )1 1 1 1 2 1
1 1
2 2

y y b y y y y b Q V Vγ γ ρ⎛ ⎞ ⎛ ⎞− + ∆ + ∆ = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

[ ]( ) ( )( )22
1 1 1 1 2 1

1
2

b y y y V y b V V
g
γγ − + ∆ = −  

[ ]( ) ( )( )2
1 1 1 2 1

1 12
2

y y y V y V V
g

− ∆ − ∆ = −  

( )( )1 1 1 2 1
1 1
2

y y y V y V V
g

⎛ ⎞−∆ + ∆ = −⎜ ⎟
⎝ ⎠

 

Substituting the expression from continuity from above and carrying out some algebra: 
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Finally, assuming that ∆y << y1 and letting V1
 = c, we obtain: 

2
1gy c=  (3a) 

1c gy=  (3b) 

This result is perhaps surprising, in that is indicates that the velocity of the wave relative to 
the underlying, stationary water depends only on the total depth of the water and is independent 
of the properties of the fluid (in particular, ρ and µ) and of the amplitude of the wave (as long as 
the constraint that ∆y << y applies),. The derivation is also restricted to “shallow water waves,” in 
which the effects of the wave motion are “sensed” at the bottom of the channel. For deep water 
waves (e.g., in the ocean), the velocity becomes much less than 1gy  and is given by the 
following figure (Fig. 10.5 from Munson): 

 

If we now imagine the same scenario as above but allow the water far to the left to move at a 
velocity anywhere from zero to values greater than c, we see that the net movement of the wave 
could be either to the left (for V1

 < c) or to the right (for V1
 > c). In the latter case, the existence of 

the wave (or any such disturbance) is never sensed by the fluid to the left. The distinction 
between the two situations in which disturbances can and cannot propagate upstream is an 
important one, so the two conditions are given distinctive names: when the fluid velocity is 
greater than the wave velocity, the conditions are said to be supercritical, and when the fluid 
velocity is less than the wave velocity, the conditions are subcritical. 

A key dimensionless number for open channel flow is the Froude number, which can be 
interpreted in general as the ratio of the inertial force on the water to the gravitational force. In 
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general, ( )1/ 2Fr /V gl= , where l is a characteristic length. In open channel flow, l is taken as the 
depth of flow, so the Froude number expresses the ratio of the flow velocity to the velocity of a 
surface wave. In the special case where Fr = 1, surface waves remain stationary and the 
conditions are said to be critical. The Froude number is equally or more important than Re for 
open channel flow. 

To explore the behavior of flow in open channels quantitatively, we begin with (and often 
model more complex systems as) consideration of in one-dimensional flow through a simple 
rectangular cross-section of width b. We designate the flow rate per unit channel width (Q/b) as 
q, and the elevation of the bottom of the channel relative to a specified datum as zbot. We assume 
that b is constant, so q is constant as well. However, the channel bottom might or might not be 
horizontal; therefore, for the general case zbot is a function of x. The velocity can be related to q 
and b by: 

( ) ( ) ( ) ( )
Q qb qV x

A x y x b y x
= = =  (4) 

Because we are assuming that the fluid is ideal, the total energy per unit weight (i.e., the total 
head) must remain constant both with depth and along the flow path. Furthermore, if we consider 
a streamline along the water surface, the pressure head is zero everywhere. Therefore the total 
head at the water surface is just the sum of the elevation head (helev) and the velocity head (hvel). 
The total head at any depth is the same as the total head at the surface, so we can write: 
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Or, equivalently, in terms of the conditions at the bottom of the water column (assuming that the 
pressure distribution is hydrostatic, equivalent to assuming that the flow is uniform): 
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Note that, even though the terms on the right in the two preceding equations all vary with x, htot 
is independent of x. In the remainder of the discussion, we will drop the explicit indication that 
zbot and y are functions of x. 

The sum of the velocity head and the depth (or the velocity head and the pressure head at the 
bottom of the channel) at a given location is referred to as the specific energy, E. Thus, the 
specific energy at any location where the flow is uniform can be expressed as: 
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As indicated by the final equality in Equation 8, for the given assumptions (fixed Q and b and 
steady, ideal flow), the specific energy is identical at all locations where zbot is the same, but it 
differs at locations where the elevation of the channel bottom differs. Thus, the specific energy is 
the variable portion of the head at a given location; the first equality in Equation 8 indicates that 
this value depends only on the depth of the water at that location.1 

For a given q in a given channel, the flow could have any depth whatsoever; the only constraint 
is that Equation 4 must be satisfied. According to Equation 8, for each depth, the water has a 
unique value of specific energy. A plot of E vs. y for a given q has a characteristic shape, 
approaching the asymptotes of y = E and y = 0 as E gets large, and passing through a minimum 
value of E at some intermediate value of y. Conventionally, such plots are drawn with y as the 
vertical axis (to correspond to our intuitive way of thinking about depth), even though y is 
probably a more logical independent parameter. The plot is shown in both ways in Figure 1. 

 
Figure 1. A typical specific energy diagram. 

                                                 
1 The analogous parameter for confined flow with a fixed Q and fixed system geometry would be the pressure head, 
since that is the only type of head that can change at a given location in such a system. Because of this, in confined 
systems, there is no point in defining a separate term analogous to specific energy. 
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The value of y at which the specific energy passes through its minimum can be found by 
differentiating Equation 8 with respect to y and setting the result to zero. Designating this value 
of y as yc, we find: 
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The corresponding values of Emin and the fluid velocity are: 
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Comparison of the final expression in Equation 10 with that in Equation 3b indicates that the 
velocity corresponding to the minimum specific energy is the velocity of a surface wave in the 
system. As a result, on the portion of the specific energy curve where V > Vc, the flow is 
supercritical, and on the portion where V < Vc, flow is subcritical. 

To summarize, to sustain any specified flow rate per unit width (Q/A, or q) of an ideal fluid 
in an open channel, the specific energy of the fluid must exceed a minimum value, Emin. If E ever 
decreases below this value, the value of q passing the location will be less than the value of q 
approaching it, and the fluid will back up. This transient event increases both y and E just 
upstream, a process that continues until the fluid has attained depth yc and specific energy Emin, at 
which point steady flow is again achieved. When the depth is exactly yc and the specific energy 
is Emin, the velocity is cgy , corresponding to a Froude number of 1. 

If the fluid has any specific energy that is greater than Emin, then uniform flow can be 
sustained at two different velocities: one subcritical and one supercritical. In a general sense, 
when the velocity is subcritical, the elevation head is more significant than the velocity head, and 
when the flow is supercritical, the reverse is true, although the transition does not correspond 
exactly to the point where the two heads are equal. 

Now consider an open channel with a fixed width but a region in which the bottom has a 
slope between two regions where it is horizontal. Initially, we will consider four different 
scenarios: either downward and upward sloping bottom, and with the upstream flow being either 
sub- or super-critical. Then we will consider a fifth scenario in which the water encounters a 
bump that consists of an upward slope followed by an equivalent downward one. In all cases, the 
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combination of the continuity and energy equations relating upstream and downstream 
conditions can be written as: 

2 2
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1 2 ,2 ,1 2bot bot botE E z z E z= + − = + ∆  (11) 

Scenario 1: Upward slope, sub-critical upstream flow. In this scenario, the upstream condition is 
characterized by a point on the “large y” portion of the specific energy diagram which 
asymptotically approaches the line y = E. The downstream location has less specific energy, so 
the shift is away from the y = E line, in the direction of decreasing depth and therefore increasing 
velocity. More specifically, at any value of ∆zbot, the system is characterized by the point on the 
sub-critical part of the E curve where E = E1

 − ∆zbot. Because dy/dE is >1 on this leg of the curve, 
and the magnitude of the change in E equals the magnitude of the change in zbot, the decrease in y 
is greater than the increase in zbot. Thus, perhaps counter-intuitively, as the bottom of the channel 
gets higher, the surface of the water gets lower. This process continues until y declines to yc. If 
the bottom continues to slope upward (i.e., if the channel bottom has not become horizontal by 
the point where y = yc), it still must be the case that E = E1

 − ∆zbot. However, E cannot decline any 
more at the given value of q, because it has reached Emin. Therefore, the assumption that was 
used to develop the y vs. E curve (constant q) is transiently violated, and q passing the critical 
point becomes less than q approaching it. This causes water to back up upstream, increasing y1 
and E1, until the steady flow of q is re-established. This process continues as long as the channel 
bottom continues to rise, so that y and E always reach yc and Emin, respectively, just at the point 
where the bottom flattens out; from there downstream, the flow remains critical as long as zbot 
remains constant. In essence, the system satisfies Equation 11 by allowing E2 to decrease until it 
reaches Emin, and satisfies the equation thereafter by causing E1 to increase. 

Scenario 2: Upward slope, super-critical upstream flow. In this scenario, the upstream condition 
is characterized by a point on the “low y” leg of the specific energy diagram, along which the 
curve approaches y = 0 asymptotically. As in Scenario 1, the downstream location has less 
specific energy than the upstream location (by ∆zbot), so the shift is away from the y = 0 
asymptote, in the direction of decreasing velocity and increasing depth. Thus, in this case, the 
water surface gains elevation as the channel bottom gets higher, opposite from the case in 
Scenario 1. Once again, if the bottom elevation increases enough, the system eventually reaches 
the limiting condition of E = Emin, and the water backs up. As in Scenario 1, backup continues 
until critical conditions are reached right at the location where the bottom flattens out. 

Scenarios 3 and 4: Downward slope, sub- or super-critical upstream flow. These scenarios are 
easier to analyze than the scenarios described above, because with a downward sloping bottom, 
the shift is toward increasing E, away from Emin. As a result, the fluid remains on whichever leg 
of the specific energy diagram characterized the upstream flow, just moving to the right. In the 
case of super-critical flow, the velocity increases in the downstream direction, and the depth 
decreases; since both the channel bottom and the depth of water decrease, the water surface goes 
downhill. By contrast, and again perhaps counter-intuitively, if the upstream flow is sub-critical, 
the depth increases more than the bottom elevation drops, and the water surface increases; i.e., 
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the water flows uphill! This occurs because the gain of potential energy is compensated by the 
decrease in kinetic energy. 

Scenario 5: Bump in the channel bottom, modeled as a section with an upward slope, a flat 
section, and then a section with a downward slope, back to the original elevation. If a sub-
critical flow approaches a bump, its velocity increases and its depth decreases as it climbs the 
uphill slope. If the flow never becomes critical, then the exact reverse process occurs on the other 
side of the bump, and the downstream flow characteristics are identical to those of the upstream 
flow. However, if the critical condition is reached, then the flow can return to E1 via either the 
sub-critical or super-critical leg of the specific energy curve. Empirically, whenever E increases 
from a critical flow condition, the super-critical path is taken preferentially; some obstruction or 
other impediment to flow is required for the flow to follow the sub-critical path. 

 

Flow constrictions. The preceding discussion focuses on changes in the elevation of the channel 
bottom (zbot) in systems with constant width (b). We next consider the inverse case of changes in 
b in systems with constant zbot, corresponding to constrictions or expansions in the flow path. For 
this analysis, we focus on a constriction in which b1

 > b2. Assuming, as before, that Q is constant, 
we conclude that in this case q1

 < q2. However, if the flow is ideal, E1
 = E2 (because Equation 11 

applies with ∆zbot
 = 0). Therefore, the situation is described not by one, but two y vs. E curves, 

one for each q. Since the value of q in the constriction is larger than that upstream, the E2 curve 
is to the right of the E1 curve. As the flow enters the constriction, the fact that E remains constant 
means that the system must move vertically from the q1 curve to the q2 curve. Given the relative 
locations of these curves, it is clear that the shift is to shallower flow if the upstream flow is sub-
critical and to deeper flow if the upstream flow is super-critical. As the constriction gets tighter, 
b decreases and q continues to increase, so the y vs. E curve for the constriction moves farther to 
the right. Eventually, it moves so far that the flow in the constriction becomes critical. Analogous 
to the scenarios analyzed above, if the constriction is made even tighter, it cannot sustain the 
flow Q, and the water backs up upstream. As a result, E1 increases, until it equals Emin in the 
constriction, and steady flow is once again established. 

The same situation can be characterized on a single graph by plotting y vs. q for the given E, as 
opposed to y vs. E for a given q. The plot can be prepared by solving Equation 11 for q, which 
yields: 

( )2 32q g y E y= −  

A typical plot of this equation is shown in Figure 2. In this case, the conditions characterizing 
flow along the constricting path correspond to those that move along the curve from left to right, 
along the upper leg if the upstream flow is sub-critical and the lower leg if the flow is super-
critical. 
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Figure 2. Plots the depth of flow as a function of (a) specific energy and (b) flow rate per 
unit width, in systems with open channel flow. 

 

Hydraulic Jumps. If flow in an open channel is sufficiently rapid and the channel discharges into 
a zone of lower velocity, a hydraulic jump occurs, in which the elevation of the water surface 
undergoes a dramatic increase over a short distance, accompanied by a great deal of turbulence 
and air entrainment. Despite the inherent non-ideality of the situation, analyzing a CV that 
includes the jump with the impulse-momentum equation, assuming ideal fluid behavior, provides 
some useful information. A definition sketch of the system is shown below. 
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Applying the impulse-momentum equation between points 1 and 2, the only external forces 
acting on the fluid in the CV are the pressure-based forces on its ends, so: 
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Substituting Q/yb for the V terms and γ /g for ρ, and rearranging: 
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Alternatively, by factoring a common factor y1
 −y2 from both sides of Equation 14, the equation 

can be written as a quadratic in y2/y1 and solved via the quadratic equation to yield: 
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The solution to Equation 16 is such that 2 1/y y  is less than 1, equal to 1, or greater than 1 
whenever 2

1 1/V gy  falls into the same range. A situation in which 2 1/y y  is less than 1 is 
impossible, since that would correspond to a spontaneous increase in the EL (i.e., a negative 
head loss across the jump). The situation where 2 1/y y  equals 1 corresponds to stable flow and 
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no jump. Thus, the only region of interest is where both 2 1/y y  and 2
1 1/V gy  are greater than 1; 

put another way, 2
1 1/V gy  must be >1 for a hydraulic jump to be possible. Because 2 /V gy  is 

the Froude number (Fr), we conclude that a hydraulic jump is possible only if the Froude number 
is >1 (i.e., if the flow is super-critical). 


