8.7. For laminar flow in a pipe or system with a similar flow geometry, flow is laminar at Reynolds numbers \(<2100\). At 10°C, the kinematic viscosity (ν) of water is $1.31 \times 10^{-6} \text{ m}^2/\text{s}$ (from Table B.2, p.761). The velocity of the fluid is:

$$V = \frac{Q}{A} = \frac{\left(4 \text{ cm}^3/\text{s}\right)}{\pi \left(0.4 \text{ cm}\right)^2 / 4} = 31.8 \text{ cm/s}$$

The Reynolds number is therefore:

$$\text{Re} = \frac{DV}{\nu} = \frac{(0.4 \text{ cm})(31.8 \text{ cm/s})}{(1.31\times10^{-6} \text{ m}^2/\text{s})(100 \text{ cm/m})^2} = 971$$

The flow is laminar. For laminar flow, the ratio of the entrance length to the diameter is given by:

$$\frac{l_e}{D} = 0.06 \text{Re} = 0.06(971) = 58.3$$

$$l_e = 58.3D = 58.3(0.4 \text{ cm}) = 23.3 \text{ cm}$$

Since the straw length (25 cm) is longer than l_e, the flow is fully developed.

8.15. The maximum pressure is the pressure that causes the Reynolds number to equal 2100. Thus:

$$\text{Re} = 2100 = \frac{DV}{\mu}$$

$$V = \frac{2100\mu}{D\rho} = \frac{2100(0.30 \text{ N-s/m}^2)}{(0.1 \text{ m})(10^3 \text{ kg/m}^3)\left(1 \frac{\text{N}}{\text{kg-m/s}^2}\right)} = 6.3 \text{ m/s}$$

For laminar flow, the headloss and pressure change due to friction are given by the Hagen-Poiseuille equation. If, in addition to friction, pressure changes because of a change in elevation, the overall pressure change is given by Equation 8.11 or 8.12. Using Equation 8.11, we find:

$$V = \frac{(\Delta p - \gamma l \sin \theta)D^2}{32\mu l}$$
\[\Delta p = \frac{32 \mu l V}{D^2} + \gamma l \sin \theta = \frac{32 \left(0.30 \text{ N-s/m}^2\right)(10 \text{ m})(6.3 \text{ m/s})}{(0.10 \text{ m})^2} + \left(9810 \frac{\text{N}}{\text{m}^3}\right)(10 \text{ m})\sin(-90^\circ) \]

\[= -37,620 \text{ Pa} = -37.6 \text{ kPa} \]

8.19. The velocity profile for laminar flow in a pipe is given by:

\[V = V_c \left(1 - \left[\frac{r}{R}\right]^2\right) \]

where \(V_c \) is the centerline velocity, \(r \) is the distance measured from the centerline, and \(R \) is the pipe radius. In the current case, \(R = 0.05 \text{ cm} \), \(r = (0.050 - 0.012) \text{ cm} \), or 0.038 cm, and \(V = 0.8 \text{ m/s} \). Also, the average velocity for laminar flow in a pipe is one-half of the maximum (centerline) velocity. The centerline velocity and flow are therefore:

\[V_c = \frac{V}{1 - \left(\frac{r}{R}\right)^2} = \frac{0.8 \text{ m/s}}{1 - \left(\frac{0.038}{0.05}\right)^2} = 1.89 \text{ m/s} \]

\[Q = V_{avg} A = 0.5V_c A = (0.5)(1.89 \text{ m/s})(\pi(0.05 \text{ m})^2) = 7.42 \times 10^{-3} \text{ m}^3/\text{s} \]

8.21. The Darcy-Weisbach equation applies for either laminar or turbulent flow. Thus, for either case of interest:

\[h_L = f \frac{l V^2}{D 2g} \]

Since \(l, D, V \) and \(g \) are the same for the two cases, the ratio of the headloss in laminar to turbulent flow is the ratio of the corresponding friction factors. For laminar flow, \(f = 64/\text{Re} \); for \(\text{Re} = 6000, f = 0.0107 \). For turbulent flow with a smooth pipe, we can find the friction factor from the Moody diagram, with the result that, for \(\epsilon/D = 0 \) and \(\text{Re} = 6000, f = 0.035 \). Therefore, if the flow were laminar, the headloss would be reduced by:

\[\frac{0.035 - 0.0107}{0.035} = 0.694 = 69.4\% \]