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CEE 342 Aut 2005 HW#5 Solutions 

4.6. The problem statement indicates that the streamlines are consistent with the equation 
2 3 / 3x y y c− = . By definition, the velocity vector at any point (x, y) in a flow field is the slope of 

the streamline at that point, i.e., it is dy/dx. Differentiating the expression for the streamline, we 
find: 

( )2 3 / 3d x y y dc− =  

2 22 0xy dx x dy y dy+ − =  

( )2 22 0xy dx x y dy+ − =  

2 2

2dy xy
dx x y

= −
−

 (1) 

The velocity vector is also given by v/u, and expressions for u and v are given. Therefore: 

( ) 2 22 2

2 2v cxy xy
u x yc x y

−
= = −

−−
 

This is the same equation as we derived for dy/dx. Thus, the given expressions for u and v are 
consistent with the equation given for the streamlines. 

For the flow to be parallel to the y axis, the streamline has to have an infinite slope. Based on 
Equation 1, this occurs at any point where x2 = y2, i.e., at y = ± x. 

For the flow to be stationary, u and v must both be zero. For this to occur, x2 must equal y2 and 
either x or y must equal zero. Both these conditions are met only at x = y = 0. 
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4.55.  

 

(a) Flow is only in the y direction (the direction of the j  unit vector), and the magnitude of the 
velocity is given by: 

( )20
2 2VV hx x

h
= −  

At the plate, x = 0, so V = 0 (showing that, as the text says, the fluid “sticks” to the plate). For 

laminar flow, the shear stress is given by dV
dx

τ µ= , where x is the direction perpendicular to the 

velocity. Thus: 

( )0
2 2 2VdV h x

dx h
τ µ= = −  

Clearly, at h = x, τ = 0. 

(b) Defining b as the width of the plate, the flowrate across section AB is given by: 

( ) ( )2 20 0
2 2

0 0

2 2
h hV VQ VdA hx x bdx b hx x dx

h h
= = − = −∫ ∫ ∫  

3 3
2 30 0

02 2
0

2
3 3 3

h
V Vx hQ b hx b h V bh
h h

⎛ ⎞ ⎛ ⎞
= − = − =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
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5.2.  

 

(a) The average velocity is given by: 

( )

3

2
1 ft /s 45.8 ft/s

2/ 4 ft
12

n
QV
A

π
= = =

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

(b) The average radial velocity around the brush is sufficient to provide an overall volumetric 
flow rate of 1 ft3/s. Therefore: 

31 ft /s 10.2 ft/s
3 1.5ft ft

12 12

r
QV
A π

= = =
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

Because the velocity profile is linear, the average velocity is one-half of the maximum value 
(Vb), so Vb

 = 20.4 ft/s. 

 

5.17.  

 

(a) We are to find the value of 
(1)

dAγ •∫ V n . The product •V n  is the component of the fluid 

velocity that is normal to and directed outward from the control volume. Correspondingly, 
dA•V n  is the volumetric flow rate leaving the control volume across the control surface dA, and 
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dAγ •V n  is the weight flow rate (weight per unit time) leaving the CV across dA. 
(1)

dAγ •∫ V n  is 

therefore the weight flow rate leaving the CV across area A1. 

The system has steady flow so, by continuity: 

1 2 3m m m
• • •

= +  

where all the mass flow rates are defined to be positive in the direction of flow. The mass flow 
rates across sections 2 and 3 can be computed from the given information, so the mass flow rate 
across section 1 is given by: 

3

1 2 3 3 3

slug slug ft slug3 1.94 2 6.88
s ft s s

m m Qρ
• • ⎛ ⎞⎛ ⎞= + = + =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

As noted above, we are trying to determine the weight flow rate leaving the CV across area A1. 

1m
•

 is the mass flow rate entering the CV across this area, so: 

1 2 2
(1)

slug ft 1 lb lb6.88 32.2 222
s s slug-ft/s s

dA m gγ
• ⎛ ⎞⎛ ⎞⎛ ⎞• = − = − = −⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠
∫ V n  

 

(b) 
(1)

dAρ •∫ V V n  is the rate at which momentum is advected into the CV across area A1. We can 

find this rate in a number of ways, one of which is as follows. 

We found in part a that the mass flow rate crossing surface 1 ( 1m
•

) is 6.88 slug/s. The ratio 1/m ρ
•

 

is therefore the volumetric flow rate crossing this area, and ( )1 1/m Aρ
•

 is the velocity 
perpendicular to the area. The flow is perpendicular to A1, so the magnitude of the total velocity 
at that surface is the same as the component that is perpendicular to the surface. Further, A1 is 
given as 0.4 ft2, so: 

( )
1

1
21

3

6.88 slug/s ft8.87
slug s1.94 0.4 ft
ft

mV
Aρ

•

= = =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

The rate of momentum advection across surface 1 is therefore: 

1 1 2

slug ft slug-ft6.88 8.87 61.0
s s s

m V
• ⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
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The preceding value is a vector, with a direction corresponding to the direction of the flow. The x 
and y components of this quantity are: 

o
1 1 2 2

slug-ft slug-ft61.0 cos30 52.8
s sx

m V
• ⎛ ⎞⎛ ⎞ = =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 

o
1 1 2 2

slug-ft slug-ft61.0 sin 30 30.5
s sy

m V
• ⎛ ⎞⎛ ⎞ = =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 

 

5.18. The mass flow rate of air through any annular section of width dr equals the product of the 
air’s density (ρ), the velocity in that section (V(r)), and the area of the section (2πr dr). The total 
mass flow rate is therefore: 

( ) ( )
2

1

2
r

r

m V r r drρ π
•

= ∫  

We have data for V vs. r, which we can use to carry out the above integration numerically. To 
carry out that integration, we should use values of r and V(r) that are in the middle of each ∆r 
segment. We can do this by setting up a spreadsheet, as follows: 

r  V  ∆r  ravg Vavg  Vavg*(2π ravg
 ∆r) 

(m) (m/s) (m)  (m/s) (m3/s) 
0.0175 0     
0.0182 32 0.0007 0.01785 16 0.0012561 
0.0187 33.9 0.0005 0.01845 32.95 0.0019099 
0.0193 35.6 0.0006 0.019 34.75 0.0024891 
0.02 36.8 0.0007 0.01965 36.2 0.0031286 
0.0206 37.9 0.0006 0.0203 37.35 0.0028584 
etc. etc. etc. etc. etc. etc. 
etc. etc. etc. etc. etc. etc. 

0.0508 0.0 0.001 0.0503 13.7 0.0043298 
  SUM 0.2699921 

 

The values in the first two columns are the given data for r and V, with r converted to mm. The 
values in the third column are ∆r, and correspond to the r value in that row minus the r value in 
the row above it (for this reason, the first row has no entry for ∆r). The fourth and fifth columns 
indicate the average values of r and V in the given ∆r segment; each of these is computed as the 
average of the corresponding value in that row and the row above it. Finally, the sixth column 
shows the volumetric flow rate through the ∆r section, corresponding to the product of Vavg and 
2πravg

 ∆r in that section. The numerical integration involves taking the sum of all the values in 
the final column, which yields the volumetric flow rate through the entire annular cross-section. 
The mass flow rate is then computed as: 
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( ) ( )
2

1

3

3

kg m kg2 1.23 0.270 0.332
m s s

r

r
m V r r rρ π
• ⎛ ⎞⎛ ⎞≈ ∆ = =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑  

As an alternative, one could integrate ( ) ( )
2

1

2
r

r

m V r r drρ π
•

= ∫  graphically. To do that, one would 

plot the function in the integrand against r and compute the area under the curve. I have taken the 
constants out of the integrand and plotted Vr vs. r in the graph below. The area under the curve is 

( )
2

1

r

r

V r r dr∫  and could be estimated by a polygon, as is shown. The area would then be 

multiplied by 2πρ to estimate m
•

, yielding a value that would presumably be as good as the 
estimate from numerical integration described above. 
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5.19.  
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By continuity, the mass flow rate must be the same at the two sections, and because the fluid is 
incompressible, the volumetric flow rate must also be equal at the two locations. The volumetric 
flow rate at the downstream section is given by: 

( )( ) ( )
max 1 ft1 ft 3

2 2 3

0 0 0

2 ft4 2 3 ft 3 ft 2 4
3 s

y

Q uWdy y y dy y y⎛ ⎞= = − = − =⎜ ⎟
⎝ ⎠∫ ∫  

The same volumetric flow rate applies at the upstream point, so: 

( )( )
3ft4 3 ft 0.75 ft

s
V=  

ft1.78
s

V =  


