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3.39. Cavitation will occur at point 2 when the pressure at that point drops below the vapor
pressure of water. That pressure is present at point 0, where the velocity is zero, so if we write
the Bernoulli equation between points 0 and 2 we find:
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The velocity at point 3 can be related to that at point 2 via continuity:
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Using that information and writing the Bernoulli equation between points 1 and 3, we find:
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3.47. We can choose points 1 and 2 to be at the same elevation as the opening in the tube, with
point 1 sufficiently upstream that the fluid is unaffected by the tube. Also, define | as the vertical
distance between point 3 and either point 1 or point 2. Write the Bernoulli equation between
points 1 and 2 we find:
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Also, because the pressure distribution is hydrostatic in a pipe with steady flow, we can relate the
pressures at points 1 and 2 by moving around the manometer as follows:
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where », is the specific weight of the manometer fluid. Substituting this result into the previous
expression for v; we find:
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The ratio of the specific weights is the same as the ratio of densities, S0 ym/ % is 0.9, and v is:

v, = \/2[9.81?2)(2.5 m)(1-0.9) = 2.21?

The flow rate is therefore:
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3.87. If we tentatively assume the air is incompressible (i.e., that it has constant density, an
assumption we will check later), we can write Bernoulli’s equation between points 1 and 2 (as
shown in the diagram), as follows:
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In the system of interest, “point 2” is actually an annular space around the cone. The fluid in this
space is all at atmospheric pressure and has uniform velocity, but different values of z.
Fortunately, for gases, changes in the elevation head are almost invariably negligible compared
to those in the velocity and/or pressure head, so we can ignore the z,—z; term in the preceding
equation, yielding:
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We can solve for v, based on the given volumetric flow rate and pipe diameter:

V:g: 0.50 m®/s _1o0M
" A (z/4)(023m) s

The cross-sectional area of flow at point 2 (the annular space around the cone) is 2zr (Ar) so,
from continuity:
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Substituting these values into the expression derived above for p;:

~152— =157 Pa
2(9.8122) m

The computed value is a gage pressure (based on the fact that we defined atmospheric pressure at
point 2 to be zero). The absolute pressure of the atmosphere is ~10° Pa, so the pressure changes
by less than 0.2% between points 1 and 2; this validates our assumption that the density of the air

is approximately constant, so that it can be treated as incompressible and Bernoulli’s equation
2 2

holds. Note also that the term sz—ng equals approximately 12.8 m, so that ignoring Az (which
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ranges from +0.2 to —0.2 m, and has a mean value of zero) seems justified.



The figure from the problem statement is shown again below, with the EL and HGL added. Since
we are assuming that frictional losses are negligible, the EL is horizontal at the level of the water
surface in the reservoir. The HGL is at that same level at locations far from the outlet pipe, but as
we approach the pipe, some piezometric head is converted into velocity head, and the elevation
of the HGL drops. In the 6-in pipe, the HGL reaches a level that is vZ./2g below the EL. Note

that this level must be the level of the outlet, since the total head is constant throughout the
system, and the velocity everywhere in the 6" pipe is the same as at the pipe outlet. The HGL
remains at that level until the pipe begins to constrict. At that point, it drops further, reaching a
minimum at the throat of the constriction, and then reverses direction and returns to the pre-
constriction level when the pipe diameter returns to 6 in. It then remains horizontal until the
water is discharged. At the throat of the constriction, the absolute pressure equals the vapor
pressure of the water.

v Energy line (EL)

35 ft.

To quantify the description given above and calculate the critical diameter, we note that the
density and vapor pressure of water at 100°F are given in tables at the back of the text as
62.0 Ib/ft3 and 0.95 psia, respectively. The pressure head of the atmosphere is:

Py _ (140 I0/ft?)(144 in*/ft*) 205
y 62.0 Ib/ft’

The velocity at the pipe outlet can be computed using the Bernoulli equation between the top
of the reservoir (point 1) and the outlet (point 2):
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Knowing the velocity and pressure at the outlet, we can write the Bernoulli equation again,
this time with point 2 being the outlet and point 1 being the throat of the constriction. Specifying
that the pressure at the constriction is the vapor pressure of water, we can determine what the
velocity must be at that point:
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=59.7 ft/s

Finally, knowing v at the throat, we can compute the diameter of the throat by applying the
continuity equation between the throat (point 1) and the outlet (point 2):
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4.7. The components of the velocity vector at any location (X, y) can be expressed as u = x and
v=x(x—-1)(y+1). The slope of the streamline (i.e., the value of dy/dx along the streamline) at

any location is v/ u, so:
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Rearranging and integrating yields:

Yo X

.[d—y: Jg(x—l)dx

Y1 y+1 X

|ny2_+1: X_22_X _ﬁ_xl
y+1 (2 %) (2

Since we are interested in the streamline that passes through the origin, we know that the point
x1=Yy1 =0 s on the line. Using that information, the equation giving all other points on the line is:
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where the subscript has been dropped since the streamline includes any point (x, y) that satisfies
the equation. The streamline is plotted below; it is symmetric around the value (1.0,-0.393),
where the velocity (given by the slope) is strictly in the +x direction (i.e., it has a positive value
of u and a v value of zero). The velocity is zero at (0, 0) and away from that point everywhere
else, so a source of the fluid must be present at the origin. The arrows drawn on the figure
indicate the direction of flow but have not been drawn to scale to indicate the magnitude of the
velocity.

Because neither u nor v depends on time, the flow is steady, so the streamline is identical to the
streakline (and the pathline) that passes through the origin.



4.17. (a) The local acceleration is, by definition, oV /ét. In this system, the only component of
the velocity is in the x direction (i.e., V =u), so the local acceleration is du/¢dt . Thus, at points 1
and 2, the local acceleration is:
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(b) For a fluid that has velocity only in the x direction, the convective acceleration is u Z—u
X

Between points 1 and 2, u is positive and Z—u can be approximated as:
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Since u decreases in the +x direction, = IS negative. As noted, u is positive, so the convective
X

. ou .
acceleration (ua—) must be negative.
X



