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CEE 342 Aut 2005. Homework #2 Solutions 

2.9. A free-body diagram of the lower hemisphere is shown below. This set of boundaries for the 
free body is chosen because it isolates the force on the bolts, which is the parameter we are 
trying to solve for. (Note: assuming that the bolts have to support all the mercury in the sphere 
might seem reasonable, but unless a free body diagram can be drawn that confirms that 
assumption based on physical principles, the assumption cannot be relied upon.) Define the 
relevant variables as follows: 

Fb
 = force on a single bolt 

p = the pressure inside the sphere anywhere in the plane at mid-depth 

A = the area inside the sphere at mid-depth 

WHg
 = weight of mercury in the lower hemisphere 

Ws
 = weight of material forming the lower hemisphere 

 

For the sphere to remain stationary, the sum of the vertical forces on the free body must equal 
zero. The downward forces on the body include (1) the pressure-based force on the upper surface 
and (2) the weight of mercury and the material forming the lower hemisphere of the container. 
The only upward force is that on the eight bolts. Therefore, the force balance can be written and 
solved as follows: 

Hg 8s bpA W W F+ + =  
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2.29. (As noted, the figure in the text [and copied below] is wrong; the heights of water above 
points A and B are 1.2 m and 1.3 m, respectively, not 0.2 m and 0.3 m.) The pressure differential 
between points A and B is given as B Ap p− = 5 kPa = 5 x 103 N/m2. The height h can be 
determined in a variety of ways, all of which involve either starting at one endpoint and 
computing the pressure changes as we move to the other endpoint, or else starting at the two 
endpoints and computing the pressure differences as we move through the system from both 
endpoints until a meeting point is reached somewhere in the middle. Using the former approach, 
and noting that the pressure is identical in the two arms of the manometer at an elevation 
corresponding to the oil/water interface in the left arm (because the space from that location to 
the same elevation in the right arm is filled with a single fluid), we can write: 

 

( ) ( )A w oil w B0.2 m 0.3 mp h pγ γ γ− + + =  
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2.35. (a) The specific weight of the liquid, γliq, is: 

liq liq 3 2 3

kg m N800 9.81 7850
m s m

gγ ρ ⎛ ⎞⎛ ⎞= = =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

For convenience, we designate the surface of the liquid in the tank as location A and the level of 
the gage as location B. The absolute pressure at B is: 

( )B,abs A,abs liq A-B 3

N 1 kPa120 kPa 7850 1.0 m 127.85 kPa
m 1000 N

p p hγ ⎛ ⎞ ⎛ ⎞= + = + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 



 4

Atmospheric pressure is 101 kPa, so the gage pressure at B is: 

( )B,gage B,abs atm 127.85 101  kPa 26.85 kPap p p= − = − =  

(b) The pressure at the bottom of the height designated as h is that at the gage, since the two 
locations are connected by a continuous, uniform fluid. Furthermore, the gage pressure at the 
Hg/air interface, which we designate as location C, is zero. Therefore, we can write: 

B,gage Hg C,gage 0p h pγ− = =  

2
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2.57. (a) The maximum water height that will allow the gate to remain closed will be the height 
that causes the moment around the hinge to be zero, when the maximum force FH is applied 
externally. The counter-clockwise moment equals the product FH,max(4 m). We must find the 
water depth that causes the resultant force on the gate from the water, and its point of action, to 
provide an equal and opposite moment. 

 

The magnitude of the resultant force exerted on the gate by the water equals the product of the 
pressure at the centroid and the area. Because the gate is rectangular, the centroid is at 
mid-depth, so the resultant force is: 

FH 

l1 

h = yc 

FR 

yR H 

4 m 

l2 
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The location of action of this force is: 

( )( )( )
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3 2
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Iy y h h
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Noting that, by geometry, l1 can be written as H − yR
 = (h + 4) − yR, we find: 

2 2
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We can now balance the moments around the hinge. 

( )1 ,max 4 mR HF l F=  

( )( )
2kN 5.33 m235.2 4m 3500 kN 4 m

m
h

h
⎛ ⎞⎡ ⎤⎛ ⎞ − =⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦ ⎝ ⎠

 

( )940.8 kN 1254 kN-m 14,000 kN-mh − =  
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940.8 kN

h +
= =  

(b) If the gate is hinged at the top, the magnitude and location of action of the resultant force due 
to the water remain the same. However, the moment arm for FR is longer, extending from the top 
of the gate to the location of action. This distance is designated l2 in the figure and can be written 
in terms of other system parameters as follows: 

2

2 1
5.33 m8m 4ml l

h
= − = +  

In this case, the balancing of moments becomes: 

( )2 ,max 4 mR HF l F=  
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( )940.8 kN 1254 kN-m 14,000 kN-mh + =  
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14,000 kN-m 1254 kN-m 13.5 m
940.8 kN

h −
= =  

Thus, the maximum height of water is less when the gate is hinged at the top. 

2.69. The diagram defining the problem and a free-body diagram of the dam are shown below. 
(Note that the parameter labeled l in the definition diagram has been relabeled as W (width) in 
the free-body diagram.) 
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We can write expressions for F1, F2, F3, y1, and y2 directly based on the system geometry and the 
fact that the three surfaces of interest are all planer. Specifically, we know that the pressure-
based force exerted on a plane surface by a uniform fluid has magnitude ch Aγ , where hc is the 
pressure at the centroid, and that the direction of the force is perpendicular to the plane. Thus, the 
forces shown in the free-body diagram can be represented as: 
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If we want to simplify the algebra by eliminating one parameter, we can carry out the 
calculations per unit length of the dam. However, that is not critical, and so it is not done here 
(despite the recommendation in the problem statement to do so). 

Because F1 and F3 increase linearly from zero to their maximum values, the location of action 
(i.e., the center of pressure) of each force is two-thirds of the way from the location where F = 0 
to the location where F = Fmax. Thus: 

1 3
hy =  and T

2
1
3 sin

hy
θ

=  

The pressure on the bottom of the dam can be expressed as the sum of a constant pressure (Fcon) 
of γ hT and a variable pressure (Fvar) that increases linearly from zero at the toe to γ (h − hT) on 
the high-water side. Treating these two contributions independently, we see that the center of 
pressure of the constant component is in the middle of the underside at a horizontal distance W/2 
from either point A or point B. Because the variable component of the force increases linearly 
from zero to its maximum value, its center of pressure is two-thirds of the way from point A to 
point B. 

We can add the two components of force applied to the bottom of the dam to obtain the center of 
pressure on the bottom (y3); the calculation is based on a summation of the moments around 
point A and the knowledge that the total force is the sum of the two components forces. Thus: 
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Finally, we note that because the dam is triangular, the location of action of its weight along the 
horizontal axis is two-thirds of the distance from A to B, so: 

2
3gy W=  

For equilibrium, the sum of the moments around point A must be zero, so the summation of 
moments can be written as: 

1 1 2 2 3 3 0g gF y F y F y F y− + − =  
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All the terms on the left side of the equation contain L, so we can divide through by L and 
eliminate that variable. Then, for a given value of W, since hT is given as 10 ft, the only unknown 
is h. Solving for h for each of the specified values of W, we find: 

W (ft) H (ft) 
20 48.2 
30 61.1 
40 71.8 
50 81.1 
60 89.1 

 

Note that, in the end, the calculation of F3 and y3 was unnecessary; we could have just as easily 
solved the problem treating the two components of force on the dam bottom separately, without 
determining their resultant. 


