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CIVE 342 Aut 2005 Exam #2 Solutions 

1. (a) The idea underlying the continuity equation is conservation of mass. Specifically, at 
steady state, the rate that mass enters a control volume must equal the rate at which it 
leaves. 

(b) The principle of conservation of mass does not depend on the presence or absence of 
friction, the compressibility of the mass, or the energy content of the mass. Furthermore, 
it is intuitive that the idea “at steady state, mass in equals mass out” has to apply 
regardless of what other processes occur in the CV, given that no process can create or 
destroy mass. Therefore, the continuity equation applies independently of any of the 
listed possibilities. 

(c) Continuity requires that A Bm m
• •

= , where m
•

 is the mass flow rate, which can be 
expressed as ρAV. Thus: 
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The velocity head is V2/2g, so: 
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2. (a) The term imom represents the momentum (mV) of the fluid per unit mass (m), so it is 
just the velocity, V. The dot product •V n  is a scalar with magnitude equal to Vn cos θ, 
where n is the magnitude of the unit vector and is therefore equal to 1.0, and θ is the 
angle between V  and n . The direction of n  is perpendicular to the surface and out of the 
CV, so it forms an angle of 150o with V . Therefore: 

( )( )o 2 o1 cos150 cos150momi dA V V A V Aρ ρ ρ• = =∫ V n  

( )( )
2

2
3 2

kg m kg-m1000 1.6 6 m 0.866 13,300 13.3 kN
m s s

⎛ ⎞⎛ ⎞= − = − = −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

(b) The term enE
•

 represents the rate of energy addition to the CV per unit mass of fluid in 
the CV. According to the problem statement, this value is −80 MW. The inefficiency of 
the turbine does not affect this value. 
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The term en
d i d V
dt

ρ
CV
∫  represents the time rate of change of the amount of energy stored 

in the fluid in the CV. At steady state, the amount of energy stored in the fluid in the CV 
is not changing, so the value of this term is zero. 

3. The average velocity (Vavg) of fluid in any flow channel is defined as the volumetric 
flow rate of the fluid divided by the cross-sectional area. In any layer of thickness dh, the 
volumetric flow rate is the product of the velocity (v) and the area (Wdh), so: 
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In general, the integration would have to be carried out over the whole cross-section of 
the flow path. However, because the flow is the same from the midline to either edge, the 
average velocity is the same above and below the midline, so we can just integrate over 
one of those cross-sections. Choosing to integrate from the midline to the top, and 
substituting the given expression for v, we find: 
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4. The horizontal and vertical components of the velocity at (x, y) = (2 m, 4 m) are 
u = 8 m/min, v = −16 m/min. The magnitude of the overall velocity is therefore: 

( ) ( )2 22 2 8 m/min 16 m/min 17.9 m/minV u v= + = + =  

The direction of the velocity is arctan (16/8), or 63.4o (1.11 radians). 

5. If we define the control volume to include all the water in pipe/ tank/ nozzle system, 
we see that the water has no horizontal velocity when it enters the CV, but it does have a 
horizontal velocity when it leaves. Therefore, a force to the right must be exerted on it by 
the pump and other parts of the boat, and it exerts an equal reaction force to the left on 
the boat. This force on the boat must, in turn, be resisted by the cable. Applying the 
energy equation between the location where the gage connects to the tank (A) and the 
outlet of the nozzle (B), and assuming that the fluid velocity at A is negligible, we can 
find the velocity exiting the nozzle and then the flow rate. Noting that zA

 = zB and that the 
pB is the hydrostatic pressure at a depth of 5' of water, we obtain: 
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The horizontal force on the water is given by: 
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As noted above, this horizontal force to the left is exerted on the water by the pump and 
other structures (the pipes) that are attached to the boat. Therefore, the water exerts an 
equal force to the right, and that force must be resisted by the cable to hold the boat in 
place. Thus, the cable experiences a tension of 443 lb. 

6. (a) The power supplied to the water equals Qγ∆hp. We can find Q from the given 
velocity exiting the nozzle and the nozzle diameter. ∆hp can be found in a few ways, but 
the easiest is to apply the energy equation between two points where p, z, and v are all 
known: (1) the surface of the lower reservoir and (2) the nozzle outlet. Because friction is 
negligible between these locations, the difference in head between them equals ∆hp. 
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(b) Since v and p are both zero at the surface of the lower reservoir, the EL at that 
location equals z, i.e., it is at the surface. The only way that the total energy of the water 
changes is if energy is added or removed mechanically, or if it is lost due to friction. In 
this system, energy is added by the pump, but is not gained or lost anywhere else in the 
system except in the upper reservoir. Therefore, the level of the EL line remains constant 
until the pump, undergoes a step increase at that location, then remains constant again 
until the upper reservoir, where it drops. For the same reason as given above (v = p = 0), 
once in the upper reservoir, the EL coincides with the surface of the reservoir. Between 
the pump and the upper reservoir, the EL must be above the top of the jet, because it is at 
a level equal to p/γ + z + v2/2g. At the top of the jet, p = 0, z equals the elevation of the top 
of the jet, and v2 must be >0, so the sum of the three terms is >z. 

At all locations, the HGL is below the EL by an amount equal to v2/2g. Thus, wherever 
v = 0, the HGL and EL coincide, and wherever v is finite, the HGL is below the EL. Thus, 
the HGL is below the EL everywhere other than at the surfaces of the two reservoirs. 
Furthermore, the height of the HGL equals p/γ + z, so wherever p = 0, it coincides with z; 
this is the case everywhere that the water is exposed to the atmospheric, such as in the 
free jet. Finally, we note that when the pipe diameter decreases, the fluid velocity 
increases, so the gap between the HGL and EL must increase. 

These ideas are all incorporated into the sketches of the EL and HGL shown in the figure 
below. 
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