
Closing the Feedback Loop Between UX Design, Software
Development, Security Engineering, and Operations

Jessica Nguyen
Marc Dupuis
jnguy@uw.edu
marcjd@uw.edu

University of Washington
Bothell, Washington

ABSTRACT
There have been many evolutions of the software development
lifecycle (SDLC). These differing models have moved software de-
velopment groups from sequential development to a more agile
and iterative development model. Increasing awareness and re-
search focused on the cyber security landscape has resulted in a
large push for "shifting security left" in the SDLC. With security
engineering teams engaged earlier and more often throughout the
SDLC, security issues will be found and fixed earlier, which in-
creases efficiency while lowering cost and overhead. While this
has been an important cultural and infrastructural shift for many
technology companies, there is still a gap in this feedback loop that
needs to be bridged: the gap between user experience designers
and the software, security, and IT/operations engineers. Trade-
offs have been made between security and usability—a challenge
known as "usability versus security." Much of the research that
propose how to change these two fields from opposing forces to
being cross-functional allies offer simplified solutions but don’t go
into granular detail about solving the problem. This paper covers
the evolution of the SDLC from the Waterfall model through the
DevSecOps agile methodology and proposes a new development
model: the Technology Development Lifecycle (TDLC). This TDLC
model aims to keep designers, software engineers, security engi-
neers, and IT/operations all within a tight feedback loop throughout
a continuous integration/continuous development pipeline. We will
discuss various workflows, use cases, and technologies that can be
used later on to implement a working environment that can enforce
the TDLC model.

CCS CONCEPTS
• Security and privacy → Human and societal aspects of se-
curity and privacy; Systems security; Software and application
security; • Software and its engineering → Software creation
and management; • Human-centered computing;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGITE ’19, October 3–5, 2019, Tacoma, WA, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6921-3/19/10. . . $15.00
https://doi.org/10.1145/3349266.3351420

KEYWORDS
user experience design, software development, security engineering,
operations, secure software development

ACM Reference Format:
Jessica Nguyen and Marc Dupuis. 2019. Closing the Feedback Loop Between
UX Design, Software Development, Security Engineering, and Operations.
In The 20th Annual Conference on Information Technology Education (SIGITE
’19), October 3–5, 2019, Tacoma, WA, USA. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3349266.3351420

1 INTRODUCTION
The study of human computer interaction (HCI) has long provided
insight on best design practices to aid the user experience of prod-
ucts, applications, and other technological interfaces [20]. While
this has contributed much to the evolution of usability design, a
competing quality between the HCI and cyber security fields has
garnered some attention.

The rise in awareness and further study in cyber security has
faced many adoption challenges. The adoption challenge with the
most attention has been injecting security into the software devel-
opment lifecycle (SDLC) to create a "secure software development
lifecycle" (SSDLC) or "secure development lifecycle" (SDL) [13]. The
main focus area that spirals from the idea of the SDL is moving
from DevOps to DevSecOps, where agile development is joined
with security processes (e.g. security through design and security
reviews), continuous integration, continuous development (CI/CD),
as well as the IT/operational tasks that come with deploying a
software product.

There have been countless proposals on how to best integrate
software and security processes but something that is oftentimes
overlooked here is the inclusion of the HCI and user experience
(UX) designers into this cross-functional new SDL. Considering the
fact that how UX design principles are applied to the end-product
can greatly impact how effective/successful these added security
controls will be with and for the user, it is paramount that we
tighten this feedback loop with designers as another stakeholder
in the development process. Adapting the DevSecOps model, we
are proposing a new development model that includes designers
into the feedback loop.

2 BACKGROUND
This section will be used to go over the current related work in
this area. This includes work on the evolution of the SDLC to

https://doi.org/10.1145/3349266.3351420
https://doi.org/10.1145/3349266.3351420

include security and agile development, UX research/design, and
the relationship between usability and security.

2.1 Evolution of the SDLC
There are different versions of the SDLC that have been adapted in
order to define, standardize, and approach the process of develop-
ing software. SDLC models are focused on scoping out a problem
domain, understanding the scope, defining a solution domain, out-
lining the implementation of software to solve this problem domain.

2.1.1 Introduction to the SDLC and Development Methodologies.
The SDLC was introduced in the 1960s to help standardize the
approach of developing large-scale information systems in a time
where project management was difficult in large business conglom-
erates where parent companies owned multiple subsidiaries across
different industries [7]. The SDLC is a process model laid out on
how to approach designing software to solve a specified problem
domain [14].

This basic SDLC model helped pave the way and standardize an
approach to implementing software. However, the basic SDLC did
not satisfy all development needs.

A notable adaptation of the SDLC is the Waterfall Model, which
was introduced in 1970. This model was designed as a linear and se-
quential timeline of phases. Each stage of the Waterfall model must
be completed before moving onto the next, and it is not designed
for a past phase to be revisited.

The key advantage of utilizing this model is that it’s easy to
follow and understand. This works well if the software being devel-
oped has strict and straightforward requirements. However, since
each phase must be completed prior to moving on to the next, this
model can cause very slow development as well as inadvertently
making the product inflexible (in terms of time and cost) to adapta-
tion if any changes were to come up later on in the process. Due to
these limitations, the Waterfall Model would not work everyone.

The V-Shaped Model is another adaptation of the SDLC. Like
the Waterfall Model, this is also sequential but it introduces an
additional two layers of parallel test design phases and testing
phases. This increases the rigidity of the model while maintaining
its low complexity. The introduction of the test design phases at
each level also helps introduce additional coverage of risk analysis
throughout the development process, which is where the original
Waterfall Model falls short [14].

Also like the Waterfall model, the V-Shaped Model can be slow
and time-consuming, which would not scale for more long-term
projects. This process and all of its required test designs/testing
would also be overkill for a project with a narrower scope. As the
technology landscape continued to grow, the SDLC methodologies
changed to better support faster, leaner, andmore agile development
practices.

2.1.2 The Agile Methodology and the SDLC. The technology indus-
try fostered frustration with the costly and time-consuming SDLC
methodologies. The large periods of time between requirements
definition to delivery often led to project failures, cancellations, or
costly overhauls if the requirements changed over time.

The software development community sought a more light-
weight methodology to standardize an SDLC that would support

an idealized faster, leaner, and more agile development process. In
2000-2001, a group of seventeen people in the industry met and
came up with something called the Agile Manifesto. The Manifesto
outlined the four key values of this new Agile Methodology, fol-
lowed by twelve supporting principles to help software developers
implement this new methodology. The four key values are as fol-
lows: 1.Individuals and Interactions Over Processes and Tools; 2.
Working Software Over Comprehensive Documentation; 3. Cus-
tomer Collaboration Over Contract Negotiation, and 4. Responding
to Change Over Following a Plan.

The Agile Manifesto [3] aimed to realign and reprioritize the im-
portance of the different moving parts in the SDLC, giving lenience
towards following processes, tools, comprehensive documentation,
contracts, and sticking to a defined plan as long as the changes
aided the mission of providing software that successfully met the
requirements in a timely manner.

With these four values in mind, the SDLC process was modified.
Instead of the costly process of going through the development
phases sequentially, the Agile Methodology encouraged more in-
cremental, iterative, and simultaneous development of the SDLC
phases. This type of approach allowed for more flexibility to adapt
to changes in requirements, overcoming hurdles, and lowering the
cost of doing so. This iterative and incremental development ap-
proach came a long way from the traditional Waterfall Model’s
measurement of progress in a linear sequential process.

Agile teams lean on automation tooling that help enable con-
tinuous integration and continuous delivery (CI/CD). We will look
more at CI/CD later on.

While the Agile Methodology solved some of the problems that
were defined in the Waterfall Model, it was discovered that there
was something that the Agile Methodology did not account for.
Once the softwarewas developed, tested, iterated on, and deployed—
what was next? There was another facet to the SDLC that was not
focused on: operations and maintenance. This refers to the cycle
of keeping the software running, identifying improvements that
need to be made (through continuous monitoring and observability
features), and implementing those improvements. Enter: DevOps.

2.1.3 Agile and DevOps. Just as the drawbacks of the Waterfall
Model inspired the Agile Methodology, the drawbacks of the Agile
Methodology similarly inspired the DevOps movement. Although
often used interchangeably, these methodologies are not the same
[19]. The additional factor that DevOps brings is explained by its
name. DevOps refers to the merging of development operations
and IT operations.

Before the DevOps movement started, the IT/operations folks
were the ones who focused onmonitoring andmaintaining a variety
of things like uptime, security, network, integrations, reliability,
and compliance. These functions require strong communication
and cross-functional testing when it comes to introducing code
changes or new features to an existing software product/system
to ensure that the integrity, functionality, and scalability of the
product does not become compromised.

The lack of this collaboration between development teams and
operational teams is what resulted in various unintended conse-
quences (the aforementioned drawbacks of Agile): creating separate
software components that could not integrate with one another,

were not extendable, made breaking changes to the existing soft-
ware, etc. These things could have been avoided mostly (if not
entirely) by having an even tighter feedback loop and collaborative
structure set up between the development and operational teams.

DevOps is not necessarily a replacement for Agile, but rather an-
other framework that works in conjunction with the Agile method-
ology. DevOps may compromise some of the speed, leanness, and
overall "agility" of Agile but all while introducing smoother cross-
functional work, increasing the frequency and quality of commu-
nication, holding automation to a higher value, and maximizing
efficiency as much as possible (Watts, 2017). Adding DevOps to
the equation requires cultural shifts, emphasizing cross-functional
collaboration and roles, and increase overall responsiveness in the
development process [17].

2.1.4 DevSecOps and the SSDLC. With the industry focus shifting
from fast development and deployment to now considering security
implications and wanting to prevent exploitation of security vulner-
abilities, much research has been done to start formally introducing
cyber security into the SDLC.

The idea was to introduce security earlier in the SDLC. Adding
security engagement at the end of the cycle proved to be difficult
because all of the major infrastructural and design decisions had
already been made. If any major security concerns were identified,
it became costly and difficult to make these changes prior to release.

This idea of "shifting security left" in the SDLC prompted cre-
ation of the Secure Software Development Lifecycle (SSDLC) or the
Secure Development Lifecycle (SDL).

Along with this new process definition also came the evolution
of DevOps into DevSecOps. This refers to the injection of security
principles and controls into the DevOps model that again integrates
development and operational work while focusing on cultural shifts
to empower the success of the new development process.

While the advent of DevSecOps has solved the problems derived
from the lack of an inclusive feedback loop between developers,
security engineers, and IT/operations, successful adoption of De-
vSecOps into the enterprise technology world is slow and ongoing.
The DevSecOps model requires both cultural and infrastructural
changes across multiple cross-functional organizations within a
large corporation. These same obstacles foreshadow some of the
challenges we are sure to face when introducing UX design prin-
ciples into the DevSecOps/SDL model. We will discuss these chal-
lenges in further detail later on in this paper as we discuss the
proposed solution for merging the gap between UX design and
security.

2.2 UX Research and Design
Before jumping into merging the gap between UX and security, we
need to explore the context of UX design, UX research, and why
these are important.

UX designers are responsible for making a product useful, effec-
tive, and intuitive for its users. The duties of a UX designer may
vary depending on the project—they may conduct user and product
research, create personas for the target users of a product, define
the information architecture for the product, start mocking up wire-
frames for the designs of the product UI, turning the wireframes

into prototypes by adding interaction choices (e.g. animations, nav-
igation options, etc.), and finally, usability testing.

UX research is more specifically focused on understanding ef-
fective design choices, designing for accessibility, user behaviors,
user goals/needs/pain points, etc. This may include interviewing
users and stakeholders, conducting surveys, hosting focus groups,
or conducting a competitive analysis with similar products in the
market [1].

UX research and design are both extremely important in deter-
mining the success of a software product. If you have a functional
product that is extremely difficult to use, then your user base will
decline and suffer. Adding to the decrease in effective usability and
design: the creation of limiting/restrictive features in a software
product. Specifically, security controls. This is where the notion of
"usability versus security" comes into play.

2.3 Usability and Security
The study of UX has evolved and researchers have started looking
into how we can maintain a software’s usability within the devel-
opment lifecycle. Some examples or how usability and security can
conflict include: methods of multi-factor authentication, password
policies, and encryption.

Users have complained about having to enable two-factor au-
thentication (2FA) or multi-factor authentication (MFA) in order
to login to certain accounts. To quote a lawsuit against Apple for
forcing 2FA on Apple accounts, "millions of...consumers across the
nation have been and continue to suffer harm...in terms of the in-
terference with the use of their personal devices and waste of their
personal time in using additional time for simple logging in" [18].
Although 2FA adds additional verification security to user accounts,
the process must be designed in a path of least resistance to the
users.

Similarly, password policies have been known as a pain point
to new user registration flows on certain platforms. Password poli-
cies that have too many restrictions in order to supposedly ensure
that the user’s password is strong can prove to be frustrating for
someone trying to create a new account [6]. Sometimes companies
may believe that more restrictions on creating a password result
in stronger passwords, but that’s not always the case. Password
policies like a maximum character length, required use of specific
numbers of special characters or non-consecutive numbers may not
always result in the highest entropy of a password. With too many
failed attempts at creating an "acceptable" password, this decline in
usability may impact a platform’s user growth.

Encryption, a way of protecting data from unauthorized parties,
is another important security measure. Pretty Good Privacy (PGP)
is a specific encryption program that can be used to sign, encrypt, or
decrypt data. Although PGP is (maybe one of the most) well-known
technologies used for encrypted communications, the usability of
the software is so low that its inventor—Phil Zimmermann—doesn’t
even use it [8].

Security by design/default is something that is often proposed
as a solution to solving this problem. Security by design implies
that security engineers are involved in the design of a product.
By doing this, the intent is to secure the product and have secure
defaults/failover modes to further protect the users [11]. Others go

further to say that we "simply" need to include security in both the
software design and UX design phases of the development process
with the ideal state of UX designers becoming educated in "the
basics of security and authentication" [10].

This is easier said than done. People who work in software,
security, and design specialize in their respective fields. It is hard
to give each of these individual contributors enough resources,
training, and time to learn the ins and outs of all three fields—even
if this were only limited to the basics. Much of the literature suggests
that we need to do more research in this area, including systemic
mapping studies and literature reviews to fully understand how we
can approach the solution to the competing factors of UX design
and agile development as well as security [12]. The key take-away
from the current work in this area would reinforce the fact that UX
designers need to be looped into the SDL, thus prompting another
infrastructural and cultural shift from the idea of "usability versus
security" to "usability and security". This will serve to address the
challenges faced by both home and organizational users alike [4, 5].
The proposed solution in this paper aims to provide the actual
details of how such a thing can be implemented in order to bridge
this gap between design, software, and security.

3 A NEW APPROACH
3.1 Agile, SSDLC, and DevSecOps Models Are

Not Enough
The UX missing from the DevSecOps workflow has not been a
large focus area. The focal point of DevSecOps until now been
formalizing and tightening the feedback loop between software
and security. This has been researched and proposed as the move
from DevOps [2] to DevSecOps and the SSDLC/SDL [16].

It only makes sense that the introduction of another party into
the feedback loop be tackled in a way similar to the movement from
DevOps to DevSecOps.

3.2 Adapting the SSDLC into the TDLC
What we are proposing here is another adaptation of the SDL and
the DevSecOps model for agile development. We want to include
the UX designers and researchers in the formalized model that we
are proposing as the Technology Development Lifecycle (TDLC).

This section of the paper will focus on identifying how the UX
design and research processes will be looped into the DevSecOps
model and designing a CI/CD framework (an automated tool suite
for development) to enforce the TDLC.

3.2.1 The Double Diamond Model. We have already gone over the
current DevSecOps model that illustrates a feedback loop between
software, security, and IT/operations. Let’s take a look at the current
UX design workflow.

The Double Diamond model is a widely used model in the UX
design process that was developed by the British Design Council
in 2005. The four key steps laid out in this model are: 1. Discover; 2.
Define; 3. Develop, and 4. Deliver.

During the "Discover" phase, UX research is conducted to scope
out project and its problem space. This research is then analyzed and
used to synthesize a list of pain points that need to be considered
in the design of the product. This is used in the "Define" phase to

fully define the specific problems, what needs to be improved, and
what the proposed solutions are. The "Develop" phase is where UX
designers begin creating sketches and wireframes for the product
design/redesign. They deliver these as prototypes [15].

The left half of each diamond represents divergent thinking,
and the right half of each diamond represents convergent think-
ing. A designer would want to practice divergent thinking when
performing things like user/product/market research or during the
ideation of designs and wireframes. Convergent thinking is critical
after each of the divergent phases because what has been explored
needs to be pared down and focused. If a designer has followed
the Double Diamond model properly, they would have started out
the process with a general idea of the problem statement, defined
specific problem areas to tackle in their design phase, and come out
of the process with specific solutions.

3.2.2 TDLC Model. The goal of the TDLC is to merge the DevSec-
Ops model with the Double Diamond Model. This will help us
include the UX design process into a DevSecOps agile development
model. The TDLC Model follows the same cyclical style of the De-
vSecOps model to show the iterative manner of this process. The
TDLC introduces one more circle into the infinity loop where the
four phases of the Double Diamond model are included at the be-
ginning. The design phases flow into the development phases, then
into the operations phases, then back to the start. All three parts of
the new infinity ring are encompassed by security to represent the
inclusion of security controls and tools throughout the process.

3.2.3 TDLCWorkflow. There are a few different parts of the TDLC
workflow. We will break them down into digestible sections to
better illustrate each flow.

Version Control For All: Design, Plan, and Document It is
important to maintain full visibility between all parties within the
TDLC. In order to do this, we would like to introduce the use of a
version control system to the designers in the workflow.

When checking files into the version control system, things
should be structured in a standardized way in order to keep things
organized. If the same format is always followed for the project
structure, then the cross-functional teams will be able to find what
they need every time. This will also make things easier for any
automation later on.

Design, Planning, and Documentation The TDLC workflow
starts off with the UX designers in the research phase. They use
their collected research to define the specific problems, scope of
the problems, propose effective design solutions. All of this will be
recorded in documents that must be peer-reviewed by design peers,
the tech lead for relevant the software engineering team, and the
security champion designated for that project.

The design documents will be committed to the shared version
control repository. The designers will then work on iterating their
actual designs and prototypes. These prototypes are passed over
to the development team(s) with access being provided the secu-
rity team as well. To ensure that the security team sees all of the
designs for security-related UI features, these can be tracked with
an additional metadata field in an issue tracking system.

Once the design prototypes are delivered to the engineering
teams, the engineers start scoping out the formal requirements of
the software itself. They will create the requirements document,

design the architecture, and write a technical design document
(TDD) during this phase. They will work alongside the security
engineering team who will be aiding with security consulting, secu-
rity requirements, threat modeling, compliance, and reviewing the
TDD for potential security concerns. These technical documents
will then also be committed to the shared version control repository.

Continuous Integration There will be a CI system that will
help facilitate the workflow of events for design, development,
security, and operations. More on this in the next section.

Continuous Development The code will move forward into
a code review cycle. If the revision is declined, then the developer
will have to go back to fix and iterate on the issue found. If the
revision is accepted, this prompts the merge of the code into the
master project.

Deployment Environments Once everything is good to go,
the project can be deployed. There are three different environments
that a project can be deployed to. There is the development en-
vironment (which is used by developers when they are building
the project), the staging environment (where testing happens e.g.
dynamic code analysis, stress testing for performance, penetration
testing, usability testing), and of course the production environment
(used for final release to the intended customer of the product.) If
any issues are found during these tests, an issue is created and the
designers/developers will be returned to another iteration of their
design/code.

Continuous Monitoring In order to make sure the software
remains running properly, there needs to be a system in place
for continuous monitoring. This will ideally alert the appropriate
parties if any issues come up in terms of availability, security, func-
tionality, and so on. Any issues found will be tracked and added to
the backlog of things to be improved on the next iteration.

3.2.4 Implementing the TDLC as a CI/CD Working Environment.
Since we would like to actually implement a CI/CD working en-
vironment to enable the use of this new TDLC model, let’s take a
look at some of the logistics and workflows.

As mentioned, it will be important to unify all parties by en-
couraging the use of the shared version control system. Figure 1
illustrates this workflow.

The overall workflow would be based on using the version con-
trol system to track any changes. When changes are submitted, then
the user (designer, developer, or security) will be moved through the
CI processes, CD processes, and then eventually into the operational
tasks until they loop back to the beginning of the flow.

Two of the main use cases to highlight the workflow are:
Designer: 1. Design Commit; 2. Design Review; 3. Usability

Testing, and 4. Redesign AND Iterate OR Deliver to Developers
Developer: 1. Code Commit; 2. Build; 3. Testing: QA, Static Code

Analysis, Unit Testing, Integration Testing, and 4. Create Issue OR
Pass/Dismiss

In order to successfully implement this CI/CD working environ-
ment for the TDLC, we have put some thought into what technolo-
gies and frameworks could be leveraged.

3.3 Version Control System
We have decided that git would be the best option for version
control, as this has become an industry-wide standard. Subversion

(svn) is another option, although it is being used less and less in
the tech industry. For this CI/CD workflow, we could leverage a
tool suite like GitLab which supports git and offers many CI/CD
features as well.

For designers, we would want to integrate something like Ver-
sions by Sympli. This is a UI that integrates with git specifically
for managing versions of graphic and wireframe/prototype files.
This tool displays the differences made between each version of
the design files and supports many plugins with commonly used
design tools. There are multiple ways to interact with git and the
most common way to do so is via the command-line, but for the
designers that haven’t had experience with this, this tool will make
the version control system more accessible in this new workflow.

3.4 Design Tools
For the initial implementation we would like to support these com-
monly used tools: 1.Adobe Illustrator; 2. Adobe XD, and 3. Sketch.

3.5 Issue Tracking System
An standard tool used for issue tracking is JIRA by Atlassian. We
would use this for creating issue tickets to track any jobs-to-be-done
for the involved parties in the TDLC.

3.6 CI/CD Server and System
As mentioned, GitLab supports automation of many CI/CD tasks.
GitLab offers GitLab Runners for automated build management.
They also offer automated testing features, deployment, and ongo-
ing monitoring for operational software after deployment.

3.7 CI/CD Alternatives
If we don’t end up using GitLab for every aspect of CI/CD automa-
tion, some alternative technologies to consider include Apache Ant
(Build), Selenium (Test), and Jenkins, Puppet, or Chef (Deploy).

4 CHALLENGES
It was (and still is) already a challenge to successfully implement the
DevSecOps model to bridge the gap between software and security.
Software and security are two fields that entail their own workloads
and priorities—this makes it difficult to prioritize cross-functional
work.

The underlying issue here is that this shift requires more than
just redesigning the SDLC. There are many moving factors in-
cluding cultural changes, incentivizing cross-functional work and
milestones, and overall understanding that all the shared work
is important [9]. It will take more time and more support from
upper-level management/leadership in software companies to re-
ally enforce this as something that needs to be adopted widely
across organizations. Adding another element here is a challenge
because we haven’t yet properly implemented the DevSecOps SDL
movement.

5 FUTUREWORK
The next steps would be to continue testing/reiterating on this new
model prior to the actual implementation of the CI/CD working
environment for the TDLC. Many of these types CI/CD processes
are already set up and automated at enterprise level for technology

Figure 1: CI/CDWorkflows © Jessica Nguyen

companies. In implementation, we’d want to stick with industry
standard technologies to allow for ease of transition into the TDLC.

REFERENCES
[1] Nick Babich. 2017. What Does a UX Designer Actually Do? https://theblog.

adobe.com/what-does-a-ux-designer-actually-do/
[2] Soon Bang, Sam Chung, Young Choh, and Marc Dupuis. 2013. A Grounded

Theory Analysis of Modern Web Applications: Knowledge, Skills, and Abilities
for DevOps. In Conference on Research in Information Technology. ACM, 61âĂŞ62.
https://doi.org/10.1145/2512209.2512229

[3] Kent Beck, Mike Beedle, Arie Van Bennekum, Alistair Cockburn, Ward Cunning-
ham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, and Ron
Jeffries. 2001. Manifesto for agile software development. (2001).

[4] Marc Dupuis and Robert Crossler. 2019. The Compromise of One’s Personal
Information: Trait Affect as an Antecedent in Explaining the Behavior of Indi-
viduals. In Proceedings of the 52nd Hawaii International Conference on System
Sciences. IEEE, 4841–4850. https://doi.org/10.24251/HICSS.2019.584

[5] Marc Dupuis and Samreen Khadeer. 2016. Curiosity Killed the Organization:
A Psychological Comparison between Malicious and Non-Malicious Insiders
and the Insider Threat. In Proceedings of the 5th Annual Conference on Research
in Information Technology. ACM Press, 35–40. https://doi.org/10.1145/2978178.
2978185

[6] Marc Dupuis and Faisal Khan. 2018. Effects of peer feedback on password
strength. In 2018 APWG Symposium on Electronic Crime Research (eCrime). IEEE,
1–9. https://doi.org/10.1109/ECRIME.2018.8376210

[7] Geoffrey Elliott. 2004. Global business information technology: an integrated
systems approach. Pearson Education.

[8] Lorenzo Franceschi-Bicchierai. 2015. Even the Inventor of PGP Doesn’t Use
PGP. https://www.vice.com/en_us/article/vvbw9a/even-the-inventor-of-pgp-
doesnt-use-pgp

[9] Patricia Johnson. 2017. Shifting Security Left: 3 DevSecOps Challenges and
How to Overcome Them - DZone DevOps. https://dzone.com/articles/shifting-
security-left-3-devsecops-challenges-amp

[10] Nicole Kobie. 2016. Security vs usability: it doesn’t have to be a trade-off. The Tele-
graph (Jul 2016). https://www.telegraph.co.uk/connect/better-business/security-
versus-usability-ux-debate/

[11] Monique Magalhaes. 2018. Security vs. usability: Does there have to be a com-
promise? http://techgenix.com/security-vs-usability/

[12] Daniel A. MagÃĳes, JohnW. Castro, and Silvia T. Acuna. 2016. HCI usability tech-
niques in agile development. In 2016 IEEE International Conference on Automatica
(ICA-ACCA). IEEE, 1–7.

[13] Ernest Mougoue. 2016. What is the secure software development life cycle
(SDLC)? | Synopsys. https://www.synopsys.com/blogs/software-security/secure-
sdlc/

[14] Manzoor Ahmad Rather and Mr Vivek Bhatnagar. 2015. A Comparative Study of
Software Development Life Cycle Models. International Journal of Application or
Innovation in Engineering & Management (IJAIEM) 4, 10 (2015), 23–29.

[15] Jonny Schneider. 2015. The Double Diamond: Strategy + Execution of the Right
Solution. https://www.thoughtworks.com/insights/blog/double-diamond

[16] Dave Shackleford. 2017. The DevSecOps Approach to Securing Your Code and Your
Cloud.

[17] John Steven. 2018. What’s the difference between agile, CI/CD, and DevOps?
| Synopsys. https://www.synopsys.com/blogs/software-security/agile-cicd-
devops-glossary/

[18] Lisa Vaas. 2019. Apple sued for ’forcing’ 2FA on accounts. https://nakedsecurity.
sophos.com/2019/02/12/apple-sued-for-forcing-2fa-on-accounts/

[19] Stephen Watts and Chrissy Kidd. 2017. DevOps vs Agile: What’s the Difference
and How Are They Related? - BMC Blogs. https://www.bmc.com/blogs/devops-
vs-agile-whats-the-difference-and-how-are-they-related/

[20] Ron B. Yeh, Andreas Paepcke, and Scott R. Klemmer. 2008. Iterative design and
evaluation of an event architecture for pen-and-paper interfaces. In Proceedings
of the 21st annual ACM symposium on User interface software and technology.
ACM, 111–120.

https://theblog.adobe.com/what-does-a-ux-designer-actually-do/
https://theblog.adobe.com/what-does-a-ux-designer-actually-do/
https://doi.org/10.1145/2512209.2512229
https://doi.org/10.24251/HICSS.2019.584
https://doi.org/10.1145/2978178.2978185
https://doi.org/10.1145/2978178.2978185
https://doi.org/10.1109/ECRIME.2018.8376210
https://www.vice.com/en_us/article/vvbw9a/even-the-inventor-of-pgp-doesnt-use-pgp
https://www.vice.com/en_us/article/vvbw9a/even-the-inventor-of-pgp-doesnt-use-pgp
https://dzone.com/articles/shifting-security-left-3-devsecops-challenges-amp
https://dzone.com/articles/shifting-security-left-3-devsecops-challenges-amp
https://www.telegraph.co.uk/connect/better-business/security-versus-usability-ux-debate/
https://www.telegraph.co.uk/connect/better-business/security-versus-usability-ux-debate/
http://techgenix.com/security-vs-usability/
https://www.synopsys.com/blogs/software-security/secure-sdlc/
https://www.synopsys.com/blogs/software-security/secure-sdlc/
https://www.thoughtworks.com/insights/blog/double-diamond
https://www.synopsys.com/blogs/software-security/agile-cicd-devops-glossary/
https://www.synopsys.com/blogs/software-security/agile-cicd-devops-glossary/
https://nakedsecurity.sophos.com/2019/02/12/apple-sued-for-forcing-2fa-on-accounts/
https://nakedsecurity.sophos.com/2019/02/12/apple-sued-for-forcing-2fa-on-accounts/
https://www.bmc.com/blogs/devops-vs-agile-whats-the-difference-and-how-are-they-related/
https://www.bmc.com/blogs/devops-vs-agile-whats-the-difference-and-how-are-they-related/

	Abstract
	1 Introduction
	2 Background
	2.1 Evolution of the SDLC
	2.2 UX Research and Design
	2.3 Usability and Security

	3 A New Approach
	3.1 Agile, SSDLC, and DevSecOps Models Are Not Enough
	3.2 Adapting the SSDLC into the TDLC
	3.3 Version Control System
	3.4 Design Tools
	3.5 Issue Tracking System
	3.6 CI/CD Server and System
	3.7 CI/CD Alternatives

	4 Challenges
	5 Future Work
	References

