Hardware Security

Mani Soma

Acknowledgements

- DARPA Broad Agency Announcements (BAAs) for IC Trust
- IEEE Hardware-Oriented Security and Trust workshops (HOST)
- Numerous papers in IEEE transactions / journals / magazines

Motivation

- Security and trust in fabless industry
- Protection against hardware attacks
 - Similarity with software / network attacks
- Protection against access to secured information
 - anti-tampering
- IP protection (anti-piracy)

Security issues in fabless industry

Security issues (2)

Key questions

- Does the IC perform its intended functions and nothing more?
- Is the design true to specifications?
 - validation issues
- For reconfigurable devices, does the configuration data accurately represent the specification, design, and synthesis?
More specific issues

- Check for unknown behaviors: how?
- Check for inserted circuits during fab (trojan)
 - check for additional unintended functions
- Validation that IC follows specifications
- Check for authentication
- Many common methods with test methods
 - “good” chip vs. “bad” or “untrusted” chip
 - test generation and design-for-test

Topics in hardware security

- Smart cards
- Watermarking of designs
 - IC fingerprinting, metering, DRM
 - Physically unclonable functions (PUFs)
- Hardware Trojan detection
- Attacks using aging, radiation, dielectric breakdown
- Obfuscation of designs
- Locking methods

Example

Method 1 and results

- IC with 1E6 transistors
- 64-bit adder with 2,048 transistors
- 2 altered transistors (“rogue” or trojans)
 - need to be detected
 - detection method
 - scan GDS-II file and compare polygons
- results
 - detect 5 “rogue” transistors
 - 1 true rogue (50% detection probability)
 - 4 false rogues (4E-6 false alarm probability)

Method 2 and results

- Generate test vectors to verify design function
- Detect function abnormalities
 - whole adder is bad
 - 100% detection probability
 - false alarm probability
 - good circuits could fail the tests
 - 2.048E-3 false alarm
- Much faster but with probability tradeoffs

Anti-piracy Methods

- IP protection
 - attacker has all design information
 - netlist, GDS-II file, test vectors
- Methods for authentication
 - IC registration
 - physically unclonable function (PUF)
 - Key locking IC
 - spatial variability
 - added FSM / XOR for obfuscation
 - combined XOR / key bits with public keys
Watermarking methods

- RFID tags
 - active or passive
 - easy to break or eavesdrop
- Digital watermarking
 - horizontal: mark specific step of synthesis or fabrication with unique signature
 - vertical: at higher functional level, signs all the lower levels

PUFs

- Fundamental idea
 - use variability-induced delays or switching thresholds for authentication
 - process variations create unique chip signature even for chips on the same wafer
- One-way function to map a challenge to a set of responses
 - IC is uniquely identified when in response to challenge(s), its response(s) is/are in the correct set

Delay-based PUFs

- ASICs / FPGAs
- Popular in smart cards, RFID, remote IC activation
- Analog timing difference on two paths with arbiter digital output
 - 1 if edge on first path arrives first

Delay PUFs (2)

- Path segments
 - same designed delay
 - differences due to process variations
 - uniqueness
 - challenge: selector bits $C_i = 1..N$
 - $C_i=1$ straight through; $C_i=0$ switch path (4 delays)
 - response = arbiter output
 - different IC = different response for same challenge
- Multiple-bit response outputs
 - $N=64$ or higher, arbiter output bits = 20 or higher

Delay PUFs (3)

- May be reverse-engineered
- Add non-linearity / programmability for robustness
 - feed-forward PUFs
 - unequal delay PUFs
 - interleaved PUFs
 - programmable PUFs

Delay PUFs (3)

- Distribute switch box segments over the chip
- Considerations
 - predictability of responses
 - Hamming distance between challenges vs. Hamming distance between responses
 - two challenges giving rise to the same response (collision)
 - sensitivity of PUF to process variations, defects, ambient conditions, etc.
Latch-based PUF
- Chip ID generator using latches
 - Use threshold offset in a latch to generate 1 bit
- Structure similar to RAM

Latch-based PUF (2)
- ID word size: 128 or larger
 - example design: read out all latches serially to form the ID
 - increasing Hamming distance between 2 adjacent chips
 - statistical post-processing to avoid unstable bits and achieve better chip identification
 - Also in popular use

FSM-based locking method
- Add states to an existing FSM
 - or use unused states (many!)
 - ID generator drives a normal FSM into unused states
 - secure key transitions back to normal state; otherwise lock

FSM lock design
- Unclonable ID generator
 - a PUF
- Key: supplied by designer (programmable)
 - remote key input possible
- Features
 - difficult to clone the PUF
 - reverse-engineer modified FSM: intractable
 - attack via combinational redundancy removal: difficult if FSM states are used in system logic

Public-Key Cryptography (PKC)
- Message encrypted by sender and decrypted by receiver
 - sent over untrusted medium
 - one-way hard-to-reverse functions
 - high-precision integer multiplication
 - modular exponentiation
 - number-factoring algorithms
- Chip ID application to lock chip or IP block

PKC process
- IP holder: generates Master Keys (MK)
 - MK-Pub and MK-Pri
 - embed MK-Pub on chip
 - locks specific IP and generates Common Key (CK) randomly
- Chip generates Random Chip Keys (RCK)
 - stored in programmable fuses permanently
 - Fab sends RCK-Pub to IP holder (secured channel)
- IP holder
 - encrypts CK with MK-Pri and RCK-Pub to generate Input Key (IK)
 - sends IK (secured channel) to Fab
 - Fab / Chip decrypts IK using MK-Pub and RCK-Pri to re-generate CK to unlock IP
PCK flow

Conclusion

- Focus on anti-piracy to assist with final project
 - state-of-the-art methods
 - still growing
 - how to attack?
- Other topics in hardware security
 - slide 8
 - all important and more work being done
- Growing research areas in IC design