Evaluating a Downdraft Wood Fired Hydronic Furnace: Computational Fluid Dynamics Modeling and Analysis

Megan Karalus karalm2@u.washington.edu

Master's of Science in Mechanical Engineering 9 June 2009

・ 同 ト ・ ヨ ト ・ ヨ ト

Megan Karalus karalm2@u.washington.edu M.S.M.E. Presentation - 2009

Benchmarking

Outline

Introduction

- Motivation
- Fundamental Concepts
- Project Description
- 2 Benchmarking
- Slots Study
 - Modeling Decisions
 - Convergence and Accuracy
 - Results and Discussion

Conclusions

Motivation Fundamental Concepts Project Description

Heating Your Home

Table: Energy sources for residential space heating (2001 Department of Energy Survey)

Fuel	Percentage
Natural Gas	60%
Electricity	23%
Fuel Oil	8%
Wood	3%
Other	6%

Using Wood as a Fuel

- Advantages: Potentially "carbon neutral"; Renewable; Local; Potentially lower cost
- Methods of Heating: Fire Places, Wood Stoves, OWHHs (Outdoor Wood-Fired Hydronic Heaters)

Motivation Fundamental Concepts Project Description

OWHH

Figure: Typical OWHH Configuration

- National Ambient Air Quality Standards for six air pollutants; three for wood combustion: NO_x, PM, CO.
- OWHHs: EPA certification program to curb PM emissions. .

• Concerns: Efficiency, Emissions, Cost.

Motivation Fundamental Concepts Project Description

The Big Picture

Technical Challenges

- Meet PM emissions standards for the EPA certification program.
- Obtain high efficiency operation.

Approaches

Megan Karalus karalm2@u.washington.edu

M.S.M.E. Presentation - 2009

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Motivation Fundamental Concepts Project Description

The Big Picture

Technical Challenges

- Meet PM emissions standards for the EPA certification program.
- Obtain high efficiency operation.
- Second capability to a broad range of fuels.

Hurdles: 'Rule of Thumb' development methods = little quantitative information

Approaches

Megan Karalus karalm2@u.washington.edu

M.S.M.E. Presentation - 2009

Motivation Fundamental Concepts Project Description

The Big Picture

Technical Challenges

- Meet PM emissions standards for the EPA certification program.
- Obtain high efficiency operation.
- Second capability to a broad range of fuels.

Hurdles: 'Rule of Thumb' development methods = little quantitative information

Approaches

- Benchmark Current Units
- 2 Develop Combustion Model

< 17 ▶

Motivation Fundamental Concepts Project Description

The Big Picture

Technical Challenges

- Meet PM emissions standards for the EPA certification program.
- Obtain high efficiency operation.
- Second capability to a broad range of fuels.

Hurdles: 'Rule of Thumb' development methods = little quantitative information

Approaches

- Benchmark Current Units
- 2 Develop Combustion Model

< □ > < 同 >

Motivation Fundamental Concepts Project Description

< (□)

A B + A B +

Wood Combustion and Particulate Emissions

Wood Combustion

- Heating and Drying
- Pyrolysis (Devolatilization)
 - Heat + Wood \rightarrow Pyrolysis Gas
- Combustion
 - Pyrolysis Gas + Air \rightarrow Buoyant Diffusion Flame
 - Particulate Matter Formation and Oxidation

Char Oxidation

Motivation Fundamental Concepts Project Description

Wood Combustion and Particulate Emissions

Wood Combustion

- Heating and Drying
- Pyrolysis (Devolatilization)
 - Heat + Wood \rightarrow Pyrolysis Gas

Combustion

- Pyrolysis Gas + Air \rightarrow Buoyant Diffusion Flame
- Particulate Matter Formation and Oxidation

Char Oxidation

Particulate Matter Formation

Two types:

- Black Carbon
 - "soot"
 - blackbody radiator: red and yellow flame color
- Brown Carbon
 - organic matter originating in solid pyrolysis
 - 90% of PM emissions in wood combustion

- 4 同 6 4 日 6 4 日 6

Motivation Fundamental Concepts Project Description

Wood Combustion and Particulate Emissions

Wood Combustion

- Heating and Drying
- Pyrolysis (Devolatilization)
 - Heat + Wood \rightarrow Pyrolysis Gas
- Combustion
 - Pyrolysis Gas + Air \rightarrow Buoyant Diffusion Flame
 - Particulate Matter Formation and Oxidation

Char Oxidation

Particulate Matter Formation

Two types:

- Black Carbon
 - "soot"
 - blackbody radiator: red and yellow flame color
- Brown Carbon
 - organic matter originating in solid pyrolysis
 - 90% of PM emissions in wood combustion

PM Emissions

Particulate Matter that "escapes" the flame.

Megan Karalus karalm2@u.washington.edu

M.S.M.E. Presentation - 2009

Motivation Fundamental Concepts Project Description

Addressing Emissions

Flame Behavior

- Buoyant Diffusion Flame
- Turbulent and Chaotic

Complete Combustion

- Time
- 2 Temperature
- Surbulence (fuel/air mixing)

Figure: Wood Fire (courtesy of Greenwood Technologies)

- 4 同 ト 4 ヨ ト 4 ヨ ト

Motivation Fundamental Concepts Project Description

Addressing Emissions

Flame Behavior

- Buoyant Diffusion Flame
- Turbulent and Chaotic

Complete Combustion

- Time
- ② Temperature
- Surbulence (fuel/air mixing)

Figure: Wood Fire (courtesy of Greenwood Technologies)

A Problem of Fluid Dynamics

<ロ> (日) (日) (日) (日) (日)

Megan Karalus karalm2@u.washington.edu M.S.M.E. Presentation - 2009

Motivation Fundamental Concepts Project Description

Case Study Furnace: The Aspen

Figure: Air inlet passages and ports

イロン 不同 とくほう イロン

3

Megan Karalus karalm2@u.washington.edu

Figure: Operation Schematic

M.S.M.E. Presentation - 2009

Motivation Fundamental Concepts Project Description

Study Outline

- Focus: Particulate Matter Emissions
 - A Problem of Fluid Dynamics
- Case Study Furnace: The Aspen
 - Emissions and Cost
 - Necessity of secondary air?
 - 2 Effect of slots alone?
- Benchmarking
 - EPA Test Method 28: Burn Rate, Emissions
 - Measurements: Air Distribution
- Modeling
 - Slots Study
 - Combusting, Computational Fluid Dynamics (CFD) Model: FLUENT

< 17 >

A B + A B +

EPA Test Method 28

- Measures: weight change; CO, CO₂, PM emissions; stack and water jacket temperatures.
- Four energy output conditions (categories)

Category	Percentage of Maximum Rated Output
1	< 15%
2	16 to 24%
3	25 to 50%
4	100%

・ロト ・同ト ・ヨト ・ヨト

- Output for Categories 1-3 controlled by damper plate.
- Choose Category 4: Benchmarking and Modeling

Burn Rate and Emissions

Figure: Category 4 discrete and continuous burn rate

Figure: Gas mole fraction percentages from an EPA test Category 4 burn

< (□)

3 x 3

Air Distribution

• Measured velocities in each port with pitot tube, assumed velocity profile, calculated volumetric flow rate.

Table: Flow split among air inlet ports

	Test 1	Test 1 Test 2	
Inlet Areas	Total CFM 79.4	Total CFM 86.9	Average
Тор	55%	59%	57%
Side	42%	39%	40%
Secondary	3%	2%	3%

• Total CFM to furnace measured with orifice: 61.7

Stoichiometry

Figure: Excess air and equivalence ratio (surrogate fuel: CH₄)

Verifying Total CFM of Inlet Air

Figure: CFM (surrogate fuel: CH₄)

< (□)

Megan Karalus karalm2@u.washington.edu M.S.M.E. Presentation - 2009

Modeling Decisions Convergence and Accuracy Results and Discussion

イロト イポト イヨト イヨト

Equations

We need to account for the following physical phenomena...

Conservation Equations:	Mass
	Momentum
	Energy
Turbulence:	Favre Averaged Navier-Stokes
	Closure Model: Realizable k- ε
Chemistry:	Mixture Fraction
Radiation:	Discrete Ordinance Model

- Many partial differential equations to solve simultaneously.
- Steady State: "Snapshot" in time at peak pyrolysis.

Modeling Assumptions and Boundary Conditions

- No Particulate Matter Model: Use CO as indicator
- "Snapshot" of furnace operation so all boundary conditions set as averages of the test data from the 40th to the 60th minute: Burn Rate and Surface Temperatures.
- Air Flow Rate: 62 CFM

	Mole Fraction	
Species	Composition 2 (%)	
CO ₂	9.6	
CO	38.3	
CH_4	23.9	
H_2O	10.0	
H_2	18.2	
	4 🗆 1	

Table: Surrogate pyrolysis fuel (Huttenen, 2006)

Modeling Decisions Convergence and Accuracy Results and Discussion

< 17 >

A B F A B F

Sources of Error

- Modeling Errors
 - Approximations: fuel choice, steady state assumptions, etc.
- Oiscretization Errors
 - Grid Dependency
- Iteration Errors
 - Convergence Criteria

Modeling Decisions Convergence and Accuracy Results and Discussion

< 17 >

A B F A B F

Sources of Error

- Modeling Errors
 - Approximations: fuel choice, steady state assumptions, etc.
- Oiscretization Errors
 - Grid Dependency
- Iteration Errors
 - Convergence Criteria

Modeling Decisions Convergence and Accuracy Results and Discussion

Grid Dependence: Flame Structures

Figure: Grid 1: 4,763,875 elements

Megan Karalus karalm2@u.washington.edu

M.S.M.E. Presentation - 2009

Modeling Decisions Convergence and Accuracy Results and Discussion

Grid Dependence: Flame Structures (cont...)

Figure: Grid 2: 5,409,456 elements

Megan Karalus karalm2@u.washington.edu

M.S.M.E. Presentation - 2009

Modeling Decisions Convergence and Accuracy Results and Discussion

Grid Dependence: Flame Structures (cont...)

Figure: Grid 3: 5,615,316 elements

Megan Karalus karalm2@u.washington.edu

M.S.M.E. Presentation - 2009

Modeling Decisions Convergence and Accuracy Results and Discussion

Grid Dependence: CO concentration

Table: Comparison of CO mole fractions at the top and bottom of each slot for three grid resolutions

		Slot Number			
	Grid Number	Grid Number 1 2 3			
	Grid 1	0.09	0.96	6.63	6.77
Top (mole fraction %)	Grid 2	0.32	0.98	5.09	4.90
	Grid 3	0.49	0.89	5.30	4.30
	Grid 1	0.00	0.11	5.48	6.07
Bottom (mole fraction %)	Grid 2	0.00	0.02	4.46	4.27
	Grid 3	0.00	0.00	4.76	3.50

Modeling Decisions Convergence and Accuracy Results and Discussion

Grid Dependence: CO concentration (cont...)

Table: Comparison across three grids of the change in CO concentration through the slots

		Slot Number				
	Grid Number	1	2	3	4	Average
Change	Grid 1	0.09	0.85	1.15	0.70	0.69
(mole	Grid 2	0.32	0.96	0.63	0.63	0.62
fraction %)	Grid 3	0.49	0.89	0.53	0.81	0.67

Megan Karalus karalm2@u.washington.edu M.S.M.E. Presentation - 2009

Modeling Decisions Convergence and Accuracy Results and Discussion

< 17 ▶

() <) <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <

Review...

Questions:

- Necessity of secondary air?
- 2 Effect of slots alone?

Scenarios:

- With Secondary Air
- Without Secondary Air

Modeling Decisions Convergence and Accuracy Results and Discussion

Air Distribution

Table: Comparison of measured and calculated air flow rates for each air inlet area, reported as percentages of the total air flow rate

		Secondary	Side	Тор
	Measurements	3%	40%	57%
With	FLUENT - Cold	16%	37%	47%
Secondary Air	FLUENT - Burn	15%	35%	50%
Without	FLUENT - Cold	-	45%	55%
Secondary Air	FLUENT - Burn	-	42%	58%

Megan Karalus karalm2@u.washington.edu M.S.M.E.

M.S.M.E. Presentation - 2009

Modeling Decisions Convergence and Accuracy Results and Discussion

Visualizing Secondary Air Addition

Figure: With Secondary Air

Figure: Without Secondary Air

(日) (同) (三) (三)

Contours of CO mole fraction and the influence of secondary air addition

Modeling Decisions Convergence and Accuracy Results and Discussion

CO Behavior in the Slots

Table: Comparison between simulation scenarios of CO mole fractions behavior in the slots

		Slot Number				
	Scenario	1	2	3	4	Average
Тор	1	0.49	0.89	5.30	4.30	2.85
(mole fraction %)	2	0.32	0.43	4.33	3.61	2.20
Bottom	1	0.00	0.00	4.76	3.50	2.18
(mole fraction %)	2	0.00	0.00	4.12	3.35	1.90
Change	1	0.49	0.89	0.53	0.81	0.67
Through Slots	2	0.31	0.43	0.21	0.26	0.30

Scenario 1: With Secondary Air Scenario 2: Without Secondary Air

M.S.M.E. Presentation - 2009

Conclusions

- CO and therefore PM emissions are due to mixing limited combustion.
- The slots by themselves do contribute to CO oxidation, and therefore PM reduction.
- Current furnace operates closer to the conditions of Scenario 2 with no secondary air.
- Recommend EPA test of the Aspen under strict Scenario 2 conditions.
- Grid dependence of solution prevents simulations from being used as a predictor of full furnace performance during peak pyrolysis.

Acknowledgements

- Prof. Kramlich
- Michael Kirby
- Greenwood Technologies
- Washington State Technology Center

(E)

< (□)

Questions?

<ロ> <同> <同> < 回> < 回>

э

Megan Karalus karalm2@u.washington.edu M.S.M.E. Presentation - 2009