

Ramgen Technologies

1

Compression Technology Path

- Increased Efficiency
 Compression Technology
- Aerodynamic and Mechanical Designs At ~3:1 to ~9:1 Pressure Ratios
- Rampressor™-Specific Component Layout & Cost
- Rampressor[™] Integrated With Conventional Combustor & Turbine
- Cycle Efficiency Increased Due to Rampressor™ Efficiency
- Higher Pressure Ratio Designs (>9:1)

- Supersonic Compression And On-Rotor Combustion/Power Extraction Technology
- High Overall Cycle Efficiency: High Compression and Power Extraction Efficiencies

Conceptual Rendering - Engine

- Two-day all government design review at NASA-Glenn (April, 2002)
 - NETL, Oak Ridge, NASA, AFRL, Army Research Lab
- Facilitated by third party, Parsons Group
- Followed the "technology readiness level" approach

Recommendation:

Move forward but develop subsystems separately before full engine integration

Various Flight Inlet Types For Propulsion

Typical Supersonic Inlet Pressure Recoveries

~93% Inlet Pressure Recovery Typical @ M = 2 A Well Designed Inlet Can Do A Little Better Than MIL-SPEC

RAMGEN SYSTEMS

Supersonic Compression vs. Relative Mach

Pressure Ratio Non-Linear With Relative Mach # <u>Supersonic Inlets Produce Significant Compression</u>

Typical Supersonic Inlet: F-15

- Rotor Flow Path:
 - 3 Supersonic
 Compression Inlet Flow
 Paths On Disk Rim
 - High Efficiency, Compact Compression
 - Minimal Number of Leading Edges
- Combination of Supersonic Flight Inlet & Conventional Axial Flow Compressor Aerodynamics

Gas Turbine Tech. Insertion Opportunity

3-Stage Intercooled Compressor Package

Replace stages with Rampressor Rotor

Replace with Rampressor

- Simple single-stage design
- High speed direct drive
- Magnetic bearings
- Useable heat recovery
- Eliminates:
 - 2nd & 3rd stage(s)
 - Speed increaser gearbox
 - Intercooler(s)
 - Lube oil system

Single-Stage Rampressor

Rampressor[™] Demonstration Program

- Goals:
 - Demonstrate Rampressor Rotor
 Operation
 - Supersonic Compression
 - Characterize Rotor Efficiency
- How:
 - Design & Build Rotor Test Apparatus
 - Conventional Compressor Test Rig Design
 - Characterize Rotor-Only Efficiencies
- Where:
 - Boeing Nozzle Test Facility (NTF)
 - Boeing Field, Seattle
- When
 - Installation April '03
 - Testing To Start August '03
 - Through 1st Quarter of CY04

Test Rig Assembly

Boeing Test Cell

Rotor

- Achieved Full Rotor Speed
 - Mechanical Systems Now Working Adequately
 - Achieved Design Rotor-relative Mach Number (M = 1.6)
- Started All 3 Rotor Inlets
 - Have Not Experienced Instabilities, Surge, Or Inlet-to-inlet Variations
 - Benign Surge Characteristics => Very Good Thing
- Near Design Pressure Ratio/Mass Flow Point
 - Operating As A Compressor!
 - -Working To Increase Rotor Efficiency & Pressure Ratio
- Have Not Optimized All Available "Knobs" To Increase Pressure Ratio, Mass Flow, and Efficiency
 - Rotor Geometry, Tip/Case Clearance, Bleed Amounts And Locations, RPM, Etc.: Additional Rotor Available For Changes/Upgrades/Etc.

Overall Operation of Rotor Aerodynamics Is As Designed/Intended

 Analytical/Numerical Design Tools Have Basic Validation: Validation
 Continuing With Test Data Generation

Rotating Ramjet Flowpath

RAMGEN POWER SYSTEMS

Engine Rotor

• Ramjet Power = Thrust x Lever Arm x Rotation Rate x No. Ramjets

Conventional Swirl-Stabilized Combustor

- Most Gas Turbine Combustors and Industrial Burners
- Flame Stability is Dependent on Main Flow

Flame is Unstable at Reduced Temperatures

Advanced or "Trapped" Vortex Combustion ?

- No Swirl Vanes Required For Flame Stability
- Main Vortex is Stationary in a Controlled Cavity

- AVC has seen wide exposure at WPAFB and DOE NETL
- GE, Williams Engines and others are pursuing commercial applications
- Ramgen, DOE and CEC are teamed to develop low NOx design
 - Flame is Independent of Main Flow for Greater Stability
 - Greater Combustor Turndown
 - Potential to Achieve Very Low Single Digits NOx

NOx for Industrial Ground-Based Combustion Turbines

Phase I AVC Proof-of-Concept Natural Gas Burning Demonstration

Ramgen is First to Demonstrate Single Digit NOx with AVC

AVC Gas Turbine Demonstration

25

RAMGEN POWER SYSTEMS