

Solar Dish Collector

University of Washington

Mechanical Engineering Department

2003-2004

Background and Goals

Background Information

- In summer of 2003, the UW ME Department requested a solar powered Stirling engine.
- The chosen Stirling engine requires 100 W of thermal energy, thus an appropriately sized parabolic dish was designed.
- All design, fabrication and assembly would be completed by the design team.

Project Goals

- Produce a reflective parabolic dish with tight dimensional tolerances.
- Design and fabricate a functioning prototype consisting of mounting supports for both the dish and engine and a reliable method to track the sun.
- The overall unit including the dish and engine must be inexpensive.

Motivation and Constraints

Motivation for using a solar powered Stirling engine

- Energy production from a clean renewable source.
- Has the potential to be more cost effective than solar PV.
- Can provide power in off grid locations.

System constraints

- The unit must be able to withstand the appropriate loading imposed on it by weather conditions.
- In order to optimize the Stirling engine's performance, the dish must be orthogonal to the sun, therefore the tracking method must be precise.
- The motors and controller units must not consume more energy than the system can produce.

Original Design

First Redesign

Parabolic Dish

Completed reflective dish

Flexible mirror surface

Important Attributes

- Similar existing systems can produce various amounts of power (1 kW – 25 kW) depending on the size of the unit.
- **The system is simple in design with easy set-up.**
- Minimal pollution.
- **There are no fuel costs, all costs are up front.**
- Depicts some of the versatility in solar energy.
- Dish/engines can compete with diesel engines on the basis of performance, environmental impact and cost in underdeveloped regions.

Possible Uses

The system can be used in conjunction with a generator to produce electricity.

- In regions without power (such as remote areas or in underdeveloped nations), the system can operate mechanical devices.
 - A fan can make a greenhouse into a convective greenhouse. This can be very important in farming regions that do not have electricity.
 - A solar powered pump can be used to pump drinking water.

Questions and Answers

-Design Team-	
Boyd Fackler	Jacob Goss
Nate Miller	Beren McKay
David Anthony	Mikhail Vayner

-Faculty-

Phillip Malte

Bruce Adee

Joseph Garbini

-Project Supporters-

Russ Noe, SAE, University of Washington including the College of Engineering, the department of Mechanical Engineering